Working memory gating mechanisms explain developmental change in rule-guided behavior

Kerstin Unger, Laura Ackerman, Christopher H. Chatham, Dima Amso, David Badre

Research output: Contribution to journalArticlepeer-review

Abstract

Cognitive control requires choosing contextual information to update into working memory (input gating), maintaining it there (maintenance) stable against distraction, and then choosing which subset of maintained information to use in guiding action (output gating). Recent work has raised the possibility that the development of rule-guided behavior, in the transition from childhood to adolescence, is linked specifically to changes in the gating components of working memory (Amso, Haas, McShane, & Badre, 2014). Given the importance of effective rule-guided behavior for decision making in this developmental transition, we used hierarchical rule tasks to probe the precise developmental dynamics of working memory gating. This mechanistic precision informs ongoing efforts to train cognitive control and working memory operations across typical and atypical development. The results of Experiment 1 verified that the development of rule-guided behavior is uniquely linked to increasing hierarchical complexity but not to increasing maintenance demands across 1st, 2nd, and 3rd order rule tasks. Experiment 2 then investigated whether this developmental trajectory in rule-guided behavior is best explained by change in input gating or output gating. Further, as input versus output gating also tend to correlate with a more proactive versus reactive control strategy in these tasks, we assessed developmental change in the degree to which these two processes were deployed efficiently given the task. Experiment 2 shows that the developmental change observed in Experiment 1 and in Amso et al. (2014) is likely a result of increased efficacy of output gating processes, as well as greater strategic efficiency in that adolescents opt for this costly process less often than children.

Original languageEnglish (US)
Pages (from-to)8-22
Number of pages15
JournalCognition
Volume155
DOIs
StatePublished - Oct 1 2016
Externally publishedYes

Keywords

  • Cognitive control
  • Computational model
  • Development
  • Input and output gating
  • Working memory

ASJC Scopus subject areas

  • Experimental and Cognitive Psychology
  • Language and Linguistics
  • Developmental and Educational Psychology
  • Linguistics and Language
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Working memory gating mechanisms explain developmental change in rule-guided behavior'. Together they form a unique fingerprint.

Cite this