TY - JOUR
T1 - Whole genome expression analysis in a mouse model of tauopathy identifies MECP2 as a possible regulator of tau pathology
AU - Maphis, Nicole M.
AU - Jiang, Shanya
AU - Binder, Jessica
AU - Wright, Carrie
AU - Gopalan, Banu
AU - Lamb, Bruce T.
AU - Bhaskar, Kiran
N1 - Funding Information:
This work was supported by Bright Focus Foundation Pilot Award (AHAF0311KB), UNM (BRaIN CoBRE P30 Pilot and SOM RAC Awards), Alzheimer’s Association (NIRG-11-204995), NIH/NINDS (R21NS077089; R01NS083704; R21NS093442; R01NS074804); NSF 1605225 funding to KB. Alzheimer’s Association (MCPG to BL) and DOD (ERMS#12109018 to BL) and NIH (AG023012 and NS074804 to BL). We thank Dr. Jeanie Na (Cleveland Clinic) and Dr. Jessica Turner (Georgia State University) for assisting with gene expression analysis. Dr. Hanna Dawson (Duke University) for providing valuable feedback on the manuscript. We thank Dr. Michael Paffett at the UNM Fluorescence Microscopy Shared Resource facility for help with confocal imaging and analysis.
Publisher Copyright:
© 2017 Maphis, Jiang, Binder, Wright, Gopalan, Lamb and Bhaskar.
PY - 2017/3/17
Y1 - 2017/3/17
N2 - Increasing evidence suggests that hyperphosphorylation and aggregation of microtubule-associated protein tau (MAPT or tau) correlates with the development of cognitive impairment in Alzheimer’s disease (AD) and related tauopathies. While numerous attempts have been made to model AD-relevant tau pathology in various animal models, there has been very limited success for these models to fully recapitulate the progression of disease as seen in human tauopathies. Here, we performed whole genome gene expression in a genomic mouse model of tauopathy that expressed human MAPT gene under the control of endogenous human MAPT promoter and also were complete knockout for endogenous mouse tau [referred to as ‘hTauMaptKO(Duke)′ mice]. First, whole genome expression analysis revealed 64 genes, which were differentially expressed (32 up-regulated and 32 down-regulated) in the hippocampus of 6-month-old hTauMaptKO(Duke) mice compared to age-matched non-transgenic controls. Genes relevant to neuronal function or neurological disease include up-regulated genes: PKC-alpha (Prkca), MECP2 (Mecp2), STRN4 (Strn4), SLC40a1 (Slc40a1), POLD2 (Pold2), PCSK2 (Pcsk2), and down-regulated genes: KRT12 (Krt12), LASS1 (Cers1), PLAT (Plat), and NRXN1 (Nrxn1). Second, network analysis suggested anatomical structure development, cellular metabolic process, cell death, signal transduction, and stress response were significantly altered biological processes in the hTauMaptKO(Duke) mice as compared to age-matched non-transgenic controls. Further characterization of a sub-group of significantly altered genes revealed elevated phosphorylation of MECP2 (methyl-CpG-binding protein-2), which binds to methylated CpGs and associates with chromatin, in hTauMaptKO(Duke) mice compared to age-matched controls. Third, phoshpho-MECP2 was elevated in autopsy brain samples from human AD compared to healthy controls. Finally, siRNA-mediated knockdown of MECP2 in human tau expressing N2a cells resulted in a significant decrease in total and phosphorylated tau. Together, these results suggest that MECP2 is a potential novel regulator of tau pathology relevant to AD and tauopathies.
AB - Increasing evidence suggests that hyperphosphorylation and aggregation of microtubule-associated protein tau (MAPT or tau) correlates with the development of cognitive impairment in Alzheimer’s disease (AD) and related tauopathies. While numerous attempts have been made to model AD-relevant tau pathology in various animal models, there has been very limited success for these models to fully recapitulate the progression of disease as seen in human tauopathies. Here, we performed whole genome gene expression in a genomic mouse model of tauopathy that expressed human MAPT gene under the control of endogenous human MAPT promoter and also were complete knockout for endogenous mouse tau [referred to as ‘hTauMaptKO(Duke)′ mice]. First, whole genome expression analysis revealed 64 genes, which were differentially expressed (32 up-regulated and 32 down-regulated) in the hippocampus of 6-month-old hTauMaptKO(Duke) mice compared to age-matched non-transgenic controls. Genes relevant to neuronal function or neurological disease include up-regulated genes: PKC-alpha (Prkca), MECP2 (Mecp2), STRN4 (Strn4), SLC40a1 (Slc40a1), POLD2 (Pold2), PCSK2 (Pcsk2), and down-regulated genes: KRT12 (Krt12), LASS1 (Cers1), PLAT (Plat), and NRXN1 (Nrxn1). Second, network analysis suggested anatomical structure development, cellular metabolic process, cell death, signal transduction, and stress response were significantly altered biological processes in the hTauMaptKO(Duke) mice as compared to age-matched non-transgenic controls. Further characterization of a sub-group of significantly altered genes revealed elevated phosphorylation of MECP2 (methyl-CpG-binding protein-2), which binds to methylated CpGs and associates with chromatin, in hTauMaptKO(Duke) mice compared to age-matched controls. Third, phoshpho-MECP2 was elevated in autopsy brain samples from human AD compared to healthy controls. Finally, siRNA-mediated knockdown of MECP2 in human tau expressing N2a cells resulted in a significant decrease in total and phosphorylated tau. Together, these results suggest that MECP2 is a potential novel regulator of tau pathology relevant to AD and tauopathies.
KW - Alzheimer’s disease
KW - MECP2
KW - Methyl-CpG-binding protein-2
KW - Microarray
KW - Tau protein
KW - Tau transgenic mice
KW - Tauopathies
UR - http://www.scopus.com/inward/record.url?scp=85018876052&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018876052&partnerID=8YFLogxK
U2 - 10.3389/fnmol.2017.00069
DO - 10.3389/fnmol.2017.00069
M3 - Article
AN - SCOPUS:85018876052
SN - 1662-5099
VL - 10
JO - Frontiers in Molecular Neuroscience
JF - Frontiers in Molecular Neuroscience
M1 - 69
ER -