Abstract
The biodistribution of radioactivity after the administration of a new tracer for α4β2 nicotinic acetylcholine receptors (nAChRs), [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), was studied in ten healthy human subjects. Following administration of 98±6 MBq [123I]5-I-A-85380, serial whole-body images were acquired over 24 h and corrected for attenuation. One to four brain single-photon emission tomography (SPET) images were also acquired between 2.5 and 24 h. Estimates of radiation absorbed dose were calculated using MIRDOSE 3.1 with a dynamic bladder model and a dynamic gastrointestinal tract model. The estimates of the highest absorbed dose (μGy/MBq) were for the urinary bladder wall (71 and 140), lower large intestine wall (70 and 72), and upper large intestine wall (63 and 64), with 2.4-h and 4.8-h urine voiding intervals, respectively. The whole brain activity at the time of the initial whole-body imaging at 14 min was 5.0% of the injected dose. Consistent with the known distribution of α4β2 nAChRs, SPET images showed the highest activity in the thalamus. These results suggest that [123I]5-I-A-85380 is a promising SPET agent to image α4β2 nAChRs in humans, with acceptable dosimetry and high brain uptake.
Original language | English (US) |
---|---|
Pages (from-to) | 183-190 |
Number of pages | 8 |
Journal | European Journal of Nuclear Medicine |
Volume | 29 |
Issue number | 2 |
DOIs | |
State | Published - 2002 |
Externally published | Yes |
Keywords
- Biodistribution
- Dosimetry
- Nicotinic acetylcholine receptors
- SPET
- [I]5-I-A-85380
ASJC Scopus subject areas
- Radiology Nuclear Medicine and imaging