Validation of results from knowledge discovery: Mass density as a predictor of breast cancer

Ryan W. Woods, Louis Oliphant, Kazuhiko Shinki, David Page, Jude Shavlik, Elizabeth Burnside

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


The purpose of our study is to identify and quantify the association between high breast mass density and breast malignancy using inductive logic programming (ILP) and conditional probabilities, and validate this association in an independent dataset. We ran our ILP algorithm on 62,219 mammographic abnormalities. We set the Aleph ILP system to generate 10,000 rules per malignant finding with a recall >5% and precision >25%. Aleph reported the best rule for each malignant finding. A total of 80 unique rules were learned. A radiologist reviewed all rules and identified potentially interesting rules. High breast mass density appeared in 24% of the learned rules. We confirmed each interesting rule by calculating the probability of malignancy given each mammographic descriptor. High mass density was the fifth highest ranked predictor. To validate the association between mass density and malignancy in an independent dataset, we collected data from 180 consecutive breast biopsies performed between 2005 and 2007. We created a logistic model with benign or malignant outcome as the dependent variable while controlling for potentially confounding factors. We calculated odds ratios based on dichomotized variables. In our logistic regression model, the independent predictors high breast mass density (OR 6.6, CI 2.5-17.6), irregular mass shape (OR 10.0, CI 3.4-29.5), spiculated mass margin (OR 20.4, CI 1.9-222.8), and subject age (β = 0.09, p < 0.0001) significantly predicted malignancy. Both ILP and conditional probabilities show that high breast mass density is an important adjunct predictor of malignancy, and this association is confirmed in an independent data set of prospectively collected mammographic findings.

Original languageEnglish (US)
Pages (from-to)554-561
Number of pages8
JournalJournal of Digital Imaging
Issue number5
StatePublished - Oct 2010
Externally publishedYes


  • Data mining
  • machine learning
  • mammography

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Computer Science Applications


Dive into the research topics of 'Validation of results from knowledge discovery: Mass density as a predictor of breast cancer'. Together they form a unique fingerprint.

Cite this