TY - GEN
T1 - Using the fast marching method to extract curves with given global properties
AU - Tao, Xiaodong
AU - Davatzikos, Christos
AU - Prince, Jerry L.
PY - 2005
Y1 - 2005
N2 - Curves are often used as anatomical features to match surfaces that represent biological objects, such as the human brain. Automated and semi-automated methods for extracting these curves usually rely on local properties of the surfaces such as the mean surface curvature without considering the global appearance of the curves themselves. These methods may require additional human intervention, and sometimes produce erroneous results. In this paper, we present an algorithm that is based on the fast marching method (FMM) to extract weighted geodesic curves. Instead of directly using the local image properties as a weight function, we use the surface properties, together with the global properties of the curves, to compute a weight function. This weight function is then used by the FMM to extract curves between given points. The general framework can be used to extract curves with different global properties. The resulting curves are guaranteed to be weighted geodesic curves without cusps usually introduced by intermediate points through which the curves are forced to pass. We show some results on both a simulated image and a highly convoluted human brain cortical surface.
AB - Curves are often used as anatomical features to match surfaces that represent biological objects, such as the human brain. Automated and semi-automated methods for extracting these curves usually rely on local properties of the surfaces such as the mean surface curvature without considering the global appearance of the curves themselves. These methods may require additional human intervention, and sometimes produce erroneous results. In this paper, we present an algorithm that is based on the fast marching method (FMM) to extract weighted geodesic curves. Instead of directly using the local image properties as a weight function, we use the surface properties, together with the global properties of the curves, to compute a weight function. This weight function is then used by the FMM to extract curves between given points. The general framework can be used to extract curves with different global properties. The resulting curves are guaranteed to be weighted geodesic curves without cusps usually introduced by intermediate points through which the curves are forced to pass. We show some results on both a simulated image and a highly convoluted human brain cortical surface.
UR - http://www.scopus.com/inward/record.url?scp=33744794336&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33744794336&partnerID=8YFLogxK
U2 - 10.1007/11566489_107
DO - 10.1007/11566489_107
M3 - Conference contribution
C2 - 16686042
AN - SCOPUS:33744794336
SN - 3540293264
SN - 9783540293262
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 870
EP - 877
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005 - 8th International Conference, Proceedings
T2 - 8th International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005
Y2 - 26 October 2005 through 29 October 2005
ER -