Unveiling RCOR1 as a rheostat at transcriptionally permissive chromatin

Carlos Rivera, Hun Goo Lee, Anna Lappala, Danni Wang, Verónica Noches, Montserrat Olivares-Costa, Marcela Sjöberg-Herrera, Jeannie T. Lee, María Estela Andrés

Research output: Contribution to journalArticlepeer-review

Abstract

RCOR1 is a known transcription repressor that recruits and positions LSD1 and HDAC1/2 on chromatin to erase histone methylation and acetylation. However, there is currently an incomplete understanding of RCOR1’s range of localization and function. Here, we probe RCOR1’s distribution on a genome-wide scale and unexpectedly find that RCOR1 is predominantly associated with transcriptionally active genes. Biochemical analysis reveals that RCOR1 associates with RNA Polymerase II (POL-II) during transcription and deacetylates its carboxy-terminal domain (CTD) at lysine 7. We provide evidence that this non-canonical RCOR1 activity is linked to dampening of POL-II productive elongation at actively transcribing genes. Thus, RCOR1 represses transcription in two ways—first, via a canonical mechanism by erasing transcriptionally permissive histone modifications through associating with HDACs and, second, via a non-canonical mechanism that deacetylates RNA POL-II’s CTD to inhibit productive elongation. We conclude that RCOR1 is a transcription rheostat.

Original languageEnglish (US)
Article number1550
JournalNature communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Unveiling RCOR1 as a rheostat at transcriptionally permissive chromatin'. Together they form a unique fingerprint.

Cite this