Unsupervised Learning for Surgical Motion by Learning to Predict the Future

Robert DiPietro, Gregory D. Hager

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

We show that it is possible to learn meaningful representations of surgical motion, without supervision, by learning to predict the future. An architecture that combines an RNN encoder-decoder and mixture density networks (MDNs) is developed to model the conditional distribution over future motion given past motion. We show that the learned encodings naturally cluster according to high-level activities, and we demonstrate the usefulness of these learned encodings in the context of information retrieval, where a database of surgical motion is searched for suturing activity using a motion-based query. Future prediction with MDNs is found to significantly outperform simpler baselines as well as the best previously-published result for this task, advancing state-of-the-art performance from an F1 score of 0.60±0.14 to 0.77±0.05.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsAlejandro F. Frangi, Gabor Fichtinger, Julia A. Schnabel, Carlos Alberola-López, Christos Davatzikos
PublisherSpringer Verlag
Pages281-288
Number of pages8
ISBN (Print)9783030009366
DOIs
StatePublished - 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: Sep 16 2018Sep 20 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11073 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period9/16/189/20/18

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Unsupervised Learning for Surgical Motion by Learning to Predict the Future'. Together they form a unique fingerprint.

Cite this