Ultrasound signal detection with multi-bounce laser microphone

Qianqian Wan, Chenchia Wang, Keshuai Xu, Jeeun Kang, Yixuan Wu, Sudhir B. Trivedi, Peter Gehlbach, Emad Boctor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations


The multi-bounce laser microphone utilizes optical methods to detect the displacement of a gold-covered thin film diaphragm caused by ultrasound signal pressure waves. This sensitive all-optical sensing technique provides new opportunities for advanced ultrasound imaging as it is expected to achieve a higher detection signal-to-noise ratio (SNR) in a broader spectrum, as compared to conventional ultrasonic transducers. The technique does not involve signal time-averaging and the realtime enhancement in detection SNR stems from the amplification of signal strength due to multiple bouncing off the diaphragm. The system was previously developed for detecting acoustic signatures generated by explosives and were limited to lower than 10 kHz in frequency. To demonstrate its feasibility for biomedical imaging applications, preliminary experiments were conducted to show high fidelity detection of ultrasound waves with frequencies ranging from 100 kHz to in excess of 1 MHz. Experimental results are also presented in this work demonstrating the improved detection sensitivity of the multi-bounce laser microphone in detecting ultrasound signals when compared with a commercial Fabry-Perot type optical hydrophone. Furthermore, we also applied the multi-bounce laser microphone to detect photoacoustic signatures emitted by India ink when a LED bar is used as the excitation source without signal averaging.

Original languageEnglish (US)
Title of host publicationIUS 2020 - International Ultrasonics Symposium, Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9781728154480
StatePublished - Sep 7 2020
Event2020 IEEE International Ultrasonics Symposium, IUS 2020 - Las Vegas, United States
Duration: Sep 7 2020Sep 11 2020

Publication series

NameIEEE International Ultrasonics Symposium, IUS
ISSN (Print)1948-5719
ISSN (Electronic)1948-5727


Conference2020 IEEE International Ultrasonics Symposium, IUS 2020
Country/TerritoryUnited States
CityLas Vegas


  • All-optical sensing
  • Laser
  • Laser microphone
  • Photoacoustic imaging
  • Signal-to-noise ratio
  • Ultrasound signal detection

ASJC Scopus subject areas

  • Acoustics and Ultrasonics


Dive into the research topics of 'Ultrasound signal detection with multi-bounce laser microphone'. Together they form a unique fingerprint.

Cite this