TY - JOUR
T1 - Transient stabilization, rather than inhibition, of MYC amplifies extrinsic apoptosis and therapeutic responses in refractory B-cell lymphoma
AU - Harrington, Colleen T.
AU - Sotillo, Elena
AU - Robert, Aude
AU - Hayer, Katharina E.
AU - Bogusz, Agata M.
AU - Psathas, James
AU - Yu, Duonan
AU - Taylor, Deanne
AU - Dang, Chi V.
AU - Klein, Peter
AU - Hogarty, Michael D.
AU - Geoerger, Birgit
AU - El-Deiry, Wafik S.
AU - Wiels, Joëlle
AU - Thomas-Tikhonenko, Andrei
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/10/1
Y1 - 2019/10/1
N2 - Therapeutic targeting of initiating oncogenes is the mainstay of precision medicine. Considerable efforts have been expended toward silencing MYC, which drives many human cancers including Burkitt lymphomas (BL). Yet, the effects of MYC silencing on standard-of-care therapies are poorly understood. Here we found that inhibition of MYC transcription renders B-lymphoblastoid cells refractory to chemotherapeutic agents. This suggested that in the context of chemotherapy, stabilization of Myc protein could be more beneficial than its inactivation. We tested this hypothesis by pharmacologically inhibiting glycogen synthase kinase 3β (GSK-3β), which normally targets Myc for proteasomal degradation. We discovered that chemorefractory BL cell lines responded better to doxorubicin and other anti-cancer drugs when Myc was transiently stabilized. In vivo, GSK3 inhibitors (GSK3i) enhanced doxorubicin-induced apoptosis in BL patient-derived xenografts (BL-PDX), as well as in murine MYC-driven lymphoma allografts. This enhancement was accompanied by and required deregulation of several key genes acting in the extrinsic, death-receptor-mediated apoptotic pathway. Consistent with this mechanism of action, GSK3i also facilitated lymphoma cell killing by a death ligand TRAIL and by a death receptor agonist mapatumumab. Thus, GSK3i synergizes with both standard chemotherapeutics and direct engagers of death receptors and could improve outcomes in patients with refractory lymphomas.
AB - Therapeutic targeting of initiating oncogenes is the mainstay of precision medicine. Considerable efforts have been expended toward silencing MYC, which drives many human cancers including Burkitt lymphomas (BL). Yet, the effects of MYC silencing on standard-of-care therapies are poorly understood. Here we found that inhibition of MYC transcription renders B-lymphoblastoid cells refractory to chemotherapeutic agents. This suggested that in the context of chemotherapy, stabilization of Myc protein could be more beneficial than its inactivation. We tested this hypothesis by pharmacologically inhibiting glycogen synthase kinase 3β (GSK-3β), which normally targets Myc for proteasomal degradation. We discovered that chemorefractory BL cell lines responded better to doxorubicin and other anti-cancer drugs when Myc was transiently stabilized. In vivo, GSK3 inhibitors (GSK3i) enhanced doxorubicin-induced apoptosis in BL patient-derived xenografts (BL-PDX), as well as in murine MYC-driven lymphoma allografts. This enhancement was accompanied by and required deregulation of several key genes acting in the extrinsic, death-receptor-mediated apoptotic pathway. Consistent with this mechanism of action, GSK3i also facilitated lymphoma cell killing by a death ligand TRAIL and by a death receptor agonist mapatumumab. Thus, GSK3i synergizes with both standard chemotherapeutics and direct engagers of death receptors and could improve outcomes in patients with refractory lymphomas.
UR - http://www.scopus.com/inward/record.url?scp=85063582507&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063582507&partnerID=8YFLogxK
U2 - 10.1038/s41375-019-0454-4
DO - 10.1038/s41375-019-0454-4
M3 - Article
C2 - 30914792
AN - SCOPUS:85063582507
SN - 0887-6924
VL - 33
SP - 2429
EP - 2441
JO - Leukemia
JF - Leukemia
IS - 10
ER -