TY - JOUR
T1 - Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor
AU - Reznik, Thomas E.
AU - Sang, Yingying
AU - Ma, Yongxian
AU - Abounader, Roger
AU - Rosen, Eliot M.
AU - Xia, Shuli
AU - Laterra, John
PY - 2008/1/1
Y1 - 2008/1/1
N2 - The mechanisms and biological implications of coordinated receptor tyrosine kinase coactivation remain poorly appreciated. Epidermal growth factor receptor (EGFR) and c-Met are frequently coexpressed in cancers, including those associated with hepatocyte growth factor (HGF) overexpression, such as malignant astrocytoma. In a previous analysis of the HGF-induced transcriptome, we found that two EGFR agonists, transforming growth factor-α and heparin-binding epidermal growth factor-like growth factor (HB-EGF), are prominently up-regulated by HGF in human glioma cells. We now report that stimulating human glioblastoma cells with recombinant HGF induces biologically relevant EGFR activation. EGFR phosphorylation at Tyr845 and Tyr1068 increased 6 to 24h after cell stimulation with HGF and temporally coincided with the induction of transforming growth factor-α (∼5-fold) and HB-EGF (∼23-fold) expression. Tyr845 and Tyr1068 phosphorylation, in response to HGF, was inhibited by cycloheximide and actinomycin D, consistent with a requirement for DNA transcription and RNA translation. Specifically, blocking HB-EGF binding to EGFR with the antagonist CRM197 inhibited HGF-induced EGFR phosphorylation by 60% to 80% and inhibited HGF-induced S-G2-M transition. CRM197 also inhibited HGF-induced anchorage-dependent cell proliferation but had no effect on HGF-mediated cytoprotection. These findings establish that EGFR can be activated with functional consequences by HGF as a result of EGFR ligand expression. This transcription-dependent cross-talk between the HGF receptor c-Met and EGFR expands our understanding of receptor tyrosine kinase signaling networks and may have considerable consequences for oncogenic mechanisms and cancer therapeutics.
AB - The mechanisms and biological implications of coordinated receptor tyrosine kinase coactivation remain poorly appreciated. Epidermal growth factor receptor (EGFR) and c-Met are frequently coexpressed in cancers, including those associated with hepatocyte growth factor (HGF) overexpression, such as malignant astrocytoma. In a previous analysis of the HGF-induced transcriptome, we found that two EGFR agonists, transforming growth factor-α and heparin-binding epidermal growth factor-like growth factor (HB-EGF), are prominently up-regulated by HGF in human glioma cells. We now report that stimulating human glioblastoma cells with recombinant HGF induces biologically relevant EGFR activation. EGFR phosphorylation at Tyr845 and Tyr1068 increased 6 to 24h after cell stimulation with HGF and temporally coincided with the induction of transforming growth factor-α (∼5-fold) and HB-EGF (∼23-fold) expression. Tyr845 and Tyr1068 phosphorylation, in response to HGF, was inhibited by cycloheximide and actinomycin D, consistent with a requirement for DNA transcription and RNA translation. Specifically, blocking HB-EGF binding to EGFR with the antagonist CRM197 inhibited HGF-induced EGFR phosphorylation by 60% to 80% and inhibited HGF-induced S-G2-M transition. CRM197 also inhibited HGF-induced anchorage-dependent cell proliferation but had no effect on HGF-mediated cytoprotection. These findings establish that EGFR can be activated with functional consequences by HGF as a result of EGFR ligand expression. This transcription-dependent cross-talk between the HGF receptor c-Met and EGFR expands our understanding of receptor tyrosine kinase signaling networks and may have considerable consequences for oncogenic mechanisms and cancer therapeutics.
UR - http://www.scopus.com/inward/record.url?scp=40749101512&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=40749101512&partnerID=8YFLogxK
U2 - 10.1158/1541-7786.MCR-07-0236
DO - 10.1158/1541-7786.MCR-07-0236
M3 - Article
C2 - 18234969
AN - SCOPUS:40749101512
SN - 1541-7786
VL - 6
SP - 139
EP - 150
JO - Molecular Cancer Research
JF - Molecular Cancer Research
IS - 1
ER -