TY - GEN
T1 - Towards Performant and Reliable Undersampled MR Reconstruction via Diffusion Model Sampling
AU - Peng, Cheng
AU - Guo, Pengfei
AU - Zhou, S. Kevin
AU - Patel, Vishal M.
AU - Chellappa, Rama
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - Magnetic Resonance (MR) image reconstruction from under-sampled acquisition promises faster scanning time. To this end, current State-of-The-Art (SoTA) approaches leverage deep neural networks and supervised training to learn a recovery model. While these approaches achieve impressive performances, the learned model can be fragile on unseen degradation, e.g. when given a different acceleration factor. These methods are also generally deterministic and provide a single solution to an ill-posed problem; as such, it can be difficult for practitioners to understand the reliability of the reconstruction. We introduce DiffuseRecon, a novel diffusion model-based MR reconstruction method. DiffuseRecon guides the generation process based on the observed signals and a pre-trained diffusion model, and does not require additional training on specific acceleration factors. DiffuseRecon is stochastic in nature and generates results from a distribution of fully-sampled MR images; as such, it allows us to explicitly visualize different potential reconstruction solutions. Lastly, DiffuseRecon proposes an accelerated, coarse-to-fine Monte-Carlo sampling scheme to approximate the most likely reconstruction candidate. The proposed DiffuseRecon achieves SoTA performances reconstructing from raw acquisition signals in fastMRI and SKM-TEA. Code will be open-sourced at www.github.com/cpeng93/DiffuseRecon.
AB - Magnetic Resonance (MR) image reconstruction from under-sampled acquisition promises faster scanning time. To this end, current State-of-The-Art (SoTA) approaches leverage deep neural networks and supervised training to learn a recovery model. While these approaches achieve impressive performances, the learned model can be fragile on unseen degradation, e.g. when given a different acceleration factor. These methods are also generally deterministic and provide a single solution to an ill-posed problem; as such, it can be difficult for practitioners to understand the reliability of the reconstruction. We introduce DiffuseRecon, a novel diffusion model-based MR reconstruction method. DiffuseRecon guides the generation process based on the observed signals and a pre-trained diffusion model, and does not require additional training on specific acceleration factors. DiffuseRecon is stochastic in nature and generates results from a distribution of fully-sampled MR images; as such, it allows us to explicitly visualize different potential reconstruction solutions. Lastly, DiffuseRecon proposes an accelerated, coarse-to-fine Monte-Carlo sampling scheme to approximate the most likely reconstruction candidate. The proposed DiffuseRecon achieves SoTA performances reconstructing from raw acquisition signals in fastMRI and SKM-TEA. Code will be open-sourced at www.github.com/cpeng93/DiffuseRecon.
UR - http://www.scopus.com/inward/record.url?scp=85139160550&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85139160550&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-16446-0_59
DO - 10.1007/978-3-031-16446-0_59
M3 - Conference contribution
AN - SCOPUS:85139160550
SN - 9783031164453
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 623
EP - 633
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
A2 - Wang, Linwei
A2 - Dou, Qi
A2 - Fletcher, P. Thomas
A2 - Speidel, Stefanie
A2 - Li, Shuo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Y2 - 18 September 2022 through 22 September 2022
ER -