Towards an advanced virtual ultrasound-guided renal biopsy trainer

Samantha Horvath, Sreekanth Arikatla, Kevin Cleary, Karun Sharma, Avi Rosenberg, Andinet Enquobahrie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Ultrasound (US)-guided renal biopsy is a critically important tool in the evaluation and management of non-malignant renal pathologies with diagnostic and prognostic significance. It requires a good biopsy technique and skill to safely and consistently obtain high yield biopsy samples for tissue analysis. This project aims to develop a virtual trainer to help clinicians to improve procedural skill competence in real-time ultrasound-guided renal biopsy. This paper presents a cost-effective, high-fidelity trainer built using low-cost hardware components and open source visualization and interactive simulation libraries: interactive medical simulation toolkit (iMSTK) and 3D Slicer. We used a physical mannequin to simulate the tactile feedback that trainees experience while scanning a real patient and to provide trainees with spatial awareness of the US scanning plane with respect to the patient's anatomy. The ultrasound probe and biopsy needle were modeled using commonly used clinical tools and were instrumented to communicate with the simulator. 3D Slicer was used to visualize an image sliced from a pre-acquired 3-D ultrasound volume based on the location of the probe, with a realistic needle rendering. The simulation engine in iMSTK modeled the interaction between the needle and the virtual tissue to generate visual deformations on the tissue and tactile forces on the needle which are transmitted to the needle that the user holds. Initial testing has shown promising results with respect to quality of simulated images and system responsiveness. Further evaluation by clinicians is planned for the next stage.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2019
Subtitle of host publicationImage-Guided Procedures, Robotic Interventions, and Modeling
EditorsBaowei Fei, Cristian A. Linte
PublisherSPIE
ISBN (Electronic)9781510625495
DOIs
StatePublished - 2019
EventMedical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling - San Diego, United States
Duration: Feb 17 2019Feb 19 2019

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10951
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling
Country/TerritoryUnited States
CitySan Diego
Period2/17/192/19/19

Keywords

  • Kidney biopsy
  • Needle to tissue interaction
  • Ultrasound
  • Virtual training

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Towards an advanced virtual ultrasound-guided renal biopsy trainer'. Together they form a unique fingerprint.

Cite this