TMS perturbs saccade trajectories and unmasks an internal feedback controller for saccades

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

When we applied a single pulse of transcranial magnetic stimulation (TMS) to any part of the human head during a saccadic eye movement, the ongoing eye velocity was reduced as early as 45 ms after the TMS, and lasted ~32 ms. The perturbation to the saccade trajectory was not due to a mechanical effect of the lid on the eye (e.g., from blinks). When the saccade involved coordinated movements of both the eyes and the lids, e.g., in vertical saccades, TMS produced a synchronized inhibition of the motor commands to both eye and lid muscles. The TMS-induced perturbation of the eye trajectory did not show habituation with repetition, and was present in both pro-saccades and anti-saccades. Despite the perturbation, the eye trajectory was corrected within the same saccade with compensatory motor commands that guided the eyes to the target. This within-saccade correction did not rely on visual input, suggesting that the brain monitored the oculomotor commands as the saccade unfolded, maintained a real-time estimate of the position of the eyes, and corrected for the perturbation. TMS disrupted saccades regardless of the location of the coil on the head, suggesting that the coil discharge engages a nonhabituating startle-like reflex system. This system affects ongoing motor commands upstream of the oculomotor neurons, possibly at the level of the superior colliculus or omnipause neurons. Therefore, a TMS pulse centrally perturbs saccadic motor commands, which are monitored possibly via efference copy and are corrected via internal feedback.

Original languageEnglish (US)
Pages (from-to)11537-11546
Number of pages10
JournalJournal of Neuroscience
Volume31
Issue number32
DOIs
StatePublished - Aug 10 2011

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'TMS perturbs saccade trajectories and unmasks an internal feedback controller for saccades'. Together they form a unique fingerprint.

Cite this