TY - JOUR
T1 - TMS perturbs saccade trajectories and unmasks an internal feedback controller for saccades
AU - Xu-Wilson, Minnan
AU - Tian, Jing
AU - Shadmehr, Reza
AU - Zee, David S.
PY - 2011/8/10
Y1 - 2011/8/10
N2 - When we applied a single pulse of transcranial magnetic stimulation (TMS) to any part of the human head during a saccadic eye movement, the ongoing eye velocity was reduced as early as 45 ms after the TMS, and lasted ~32 ms. The perturbation to the saccade trajectory was not due to a mechanical effect of the lid on the eye (e.g., from blinks). When the saccade involved coordinated movements of both the eyes and the lids, e.g., in vertical saccades, TMS produced a synchronized inhibition of the motor commands to both eye and lid muscles. The TMS-induced perturbation of the eye trajectory did not show habituation with repetition, and was present in both pro-saccades and anti-saccades. Despite the perturbation, the eye trajectory was corrected within the same saccade with compensatory motor commands that guided the eyes to the target. This within-saccade correction did not rely on visual input, suggesting that the brain monitored the oculomotor commands as the saccade unfolded, maintained a real-time estimate of the position of the eyes, and corrected for the perturbation. TMS disrupted saccades regardless of the location of the coil on the head, suggesting that the coil discharge engages a nonhabituating startle-like reflex system. This system affects ongoing motor commands upstream of the oculomotor neurons, possibly at the level of the superior colliculus or omnipause neurons. Therefore, a TMS pulse centrally perturbs saccadic motor commands, which are monitored possibly via efference copy and are corrected via internal feedback.
AB - When we applied a single pulse of transcranial magnetic stimulation (TMS) to any part of the human head during a saccadic eye movement, the ongoing eye velocity was reduced as early as 45 ms after the TMS, and lasted ~32 ms. The perturbation to the saccade trajectory was not due to a mechanical effect of the lid on the eye (e.g., from blinks). When the saccade involved coordinated movements of both the eyes and the lids, e.g., in vertical saccades, TMS produced a synchronized inhibition of the motor commands to both eye and lid muscles. The TMS-induced perturbation of the eye trajectory did not show habituation with repetition, and was present in both pro-saccades and anti-saccades. Despite the perturbation, the eye trajectory was corrected within the same saccade with compensatory motor commands that guided the eyes to the target. This within-saccade correction did not rely on visual input, suggesting that the brain monitored the oculomotor commands as the saccade unfolded, maintained a real-time estimate of the position of the eyes, and corrected for the perturbation. TMS disrupted saccades regardless of the location of the coil on the head, suggesting that the coil discharge engages a nonhabituating startle-like reflex system. This system affects ongoing motor commands upstream of the oculomotor neurons, possibly at the level of the superior colliculus or omnipause neurons. Therefore, a TMS pulse centrally perturbs saccadic motor commands, which are monitored possibly via efference copy and are corrected via internal feedback.
UR - http://www.scopus.com/inward/record.url?scp=80051576118&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051576118&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.1584-11.2011
DO - 10.1523/JNEUROSCI.1584-11.2011
M3 - Article
C2 - 21832184
AN - SCOPUS:80051576118
SN - 0270-6474
VL - 31
SP - 11537
EP - 11546
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 32
ER -