TY - JOUR
T1 - Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells
AU - Rajput, Shashi
AU - Kumar, B. N.Prashanth
AU - Banik, Payel
AU - Parida, Sheetal
AU - Mandal, Mahitosh
N1 - Publisher Copyright:
© 2014 Wiley Periodicals, Inc., A Wiley Company.
PY - 2015/3/1
Y1 - 2015/3/1
N2 - Radiotherapy remains a prime approach to adjuvant therapies in patients with early and advanced breast cancer. In spite of therapeutic success, metastatic progression in patients undergoing therapy, limits its application. However, effective therapeutic strategies to understand the cellular and molecular machinery in inhibiting radiation-induced metastatic progression, which is poorly understood so far, need to be strengthened. Ionizing radiation was known to prompt cancer cell's metastatic ability by eliciting Transforming Growth Factor-beta (TGF-β), a key regulator in epithelial-mesenchymal transdifferentiation and radio-resistance. In this viewpoint, we employed thymoquinone as a radiosensitizer to investigate its migration and invasion reversal abilities in irradiated breast cancer cell lines by assessing their respective attributes. The role of metastasis regulatory molecules like TGF-β, E-cadherin, and integrin αV and its downstream molecules were determined using RT-PCR, western blotting, immunofluorescence, and extracellular TGF-β levels affirmed through ELISA assays. These studies affirmed the TGF-β restoring ability of thymoquinone in radiation-driven migration and invasion. Also, results demonstrated that the epithelial markers E-cadherin and cytokeratin 19 were downregulated whereas mesenchymal markers like integrin αV, MMP9, and MMP2 were upregulated by irradiation treatment; however thymoquinone pre-sensitization has reverted the expression of these proteins back to control proteins expression. Here, paclitaxel was chosen as an apoptosis inducer in TGF-β restored cells and confirmed its cytotoxic effects in radiation alone and thymoquinone sensitized irradiated cells. We conclude that this therapeutic modality is effective in preventing radiation-induced epithelial-mesenchymal transdifferentiation and concomitant induction of apoptosis in breast cancer.
AB - Radiotherapy remains a prime approach to adjuvant therapies in patients with early and advanced breast cancer. In spite of therapeutic success, metastatic progression in patients undergoing therapy, limits its application. However, effective therapeutic strategies to understand the cellular and molecular machinery in inhibiting radiation-induced metastatic progression, which is poorly understood so far, need to be strengthened. Ionizing radiation was known to prompt cancer cell's metastatic ability by eliciting Transforming Growth Factor-beta (TGF-β), a key regulator in epithelial-mesenchymal transdifferentiation and radio-resistance. In this viewpoint, we employed thymoquinone as a radiosensitizer to investigate its migration and invasion reversal abilities in irradiated breast cancer cell lines by assessing their respective attributes. The role of metastasis regulatory molecules like TGF-β, E-cadherin, and integrin αV and its downstream molecules were determined using RT-PCR, western blotting, immunofluorescence, and extracellular TGF-β levels affirmed through ELISA assays. These studies affirmed the TGF-β restoring ability of thymoquinone in radiation-driven migration and invasion. Also, results demonstrated that the epithelial markers E-cadherin and cytokeratin 19 were downregulated whereas mesenchymal markers like integrin αV, MMP9, and MMP2 were upregulated by irradiation treatment; however thymoquinone pre-sensitization has reverted the expression of these proteins back to control proteins expression. Here, paclitaxel was chosen as an apoptosis inducer in TGF-β restored cells and confirmed its cytotoxic effects in radiation alone and thymoquinone sensitized irradiated cells. We conclude that this therapeutic modality is effective in preventing radiation-induced epithelial-mesenchymal transdifferentiation and concomitant induction of apoptosis in breast cancer.
UR - http://www.scopus.com/inward/record.url?scp=84920868180&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920868180&partnerID=8YFLogxK
U2 - 10.1002/jcp.24780
DO - 10.1002/jcp.24780
M3 - Article
C2 - 25164250
AN - SCOPUS:84920868180
SN - 0021-9541
VL - 230
SP - 620
EP - 629
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 3
ER -