TY - JOUR
T1 - Therapeutic efficacy of an alpha-particle emitter labeled anti-GD2 humanized antibody against osteosarcoma—a proof of concept study
AU - Liatsou, Ioanna
AU - Fu, Yingli
AU - Li, Zhi
AU - Hasan, Mahmud
AU - Guo, Xin
AU - Yu, Jing
AU - Piccolo, Joseph
AU - Cartee, Allison
AU - Wang, Hao
AU - Du, Yong
AU - Bryan, Jeffrey
AU - Gabrielson, Kathleen
AU - Kraitchman, Dara L.
AU - Sgouros, George
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.
PY - 2024/4
Y1 - 2024/4
N2 - Purpose: Current treatments for osteosarcoma (OS) have a poor prognosis, particularly for patients with metastasis and recurrence, underscoring an urgent need for new targeted therapies to improve survival. Targeted alpha-particle therapy selectively delivers cytotoxic payloads to tumors with radiolabeled molecules that recognize tumor-associated antigens. We have recently demonstrated the potential of an FDA approved, humanized anti-GD2 antibody, hu3F8, as a targeted delivery vector for radiopharmaceutical imaging of OS. The current study aims to advance this system for alpha-particle therapy of OS. Methods: The hu3F8 antibody was radiolabeled with actinium-225, and the safety and therapeutic efficacy of the [225Ac]Ac-DOTA-hu3F8 were evaluated in both orthotopic murine xenografts of OS and spontaneously occurring OS in canines. Results: Significant antitumor activity was proven in both cases, leading to improved overall survival. In the murine xenograft’s case, tumor growth was delayed by 16–18 days compared to the untreated cohort as demonstrated by bioluminescence imaging. The results were further validated with magnetic resonance imaging at 33 days after treatment, and microcomputed tomography and planar microradiography post-mortem. Histological evaluations revealed radiation-induced renal toxicity, manifested as epithelial cell karyomegaly and suggestive polyploidy in the kidneys, suggesting rapid recovery of renal function after radiation damage. Treatment of the two canine patients delayed the progression of metastatic spread, with an overall survival time of 211 and 437 days and survival beyond documented metastasis of 111 and 84 days, respectively. Conclusion: This study highlights the potential of hu3F8-based alpha-particle therapy as a promising treatment strategy for OS.
AB - Purpose: Current treatments for osteosarcoma (OS) have a poor prognosis, particularly for patients with metastasis and recurrence, underscoring an urgent need for new targeted therapies to improve survival. Targeted alpha-particle therapy selectively delivers cytotoxic payloads to tumors with radiolabeled molecules that recognize tumor-associated antigens. We have recently demonstrated the potential of an FDA approved, humanized anti-GD2 antibody, hu3F8, as a targeted delivery vector for radiopharmaceutical imaging of OS. The current study aims to advance this system for alpha-particle therapy of OS. Methods: The hu3F8 antibody was radiolabeled with actinium-225, and the safety and therapeutic efficacy of the [225Ac]Ac-DOTA-hu3F8 were evaluated in both orthotopic murine xenografts of OS and spontaneously occurring OS in canines. Results: Significant antitumor activity was proven in both cases, leading to improved overall survival. In the murine xenograft’s case, tumor growth was delayed by 16–18 days compared to the untreated cohort as demonstrated by bioluminescence imaging. The results were further validated with magnetic resonance imaging at 33 days after treatment, and microcomputed tomography and planar microradiography post-mortem. Histological evaluations revealed radiation-induced renal toxicity, manifested as epithelial cell karyomegaly and suggestive polyploidy in the kidneys, suggesting rapid recovery of renal function after radiation damage. Treatment of the two canine patients delayed the progression of metastatic spread, with an overall survival time of 211 and 437 days and survival beyond documented metastasis of 111 and 84 days, respectively. Conclusion: This study highlights the potential of hu3F8-based alpha-particle therapy as a promising treatment strategy for OS.
KW - Anti-GD2 antibody
KW - Hu3F8
KW - Osteosarcoma
KW - Targeted alpha-particle therapy
KW - Theranostics
UR - http://www.scopus.com/inward/record.url?scp=85180237764&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85180237764&partnerID=8YFLogxK
U2 - 10.1007/s00259-023-06528-2
DO - 10.1007/s00259-023-06528-2
M3 - Article
C2 - 38108831
AN - SCOPUS:85180237764
SN - 1619-7070
VL - 51
SP - 1409
EP - 1420
JO - European Journal of Nuclear Medicine and Molecular Imaging
JF - European Journal of Nuclear Medicine and Molecular Imaging
IS - 5
ER -