The risk of a mosquito-borne infectionin a heterogeneous environment

David L. Smith, Jonathan Dushoff, F. Ellis McKenzie

Research output: Contribution to journalArticlepeer-review

220 Scopus citations


A common assumption about malaria, dengue, and other mosquitoborne infections is that the two main components of the risk of human infection-the rate at which people are bitten (human biting rate) and the proportion of mosquitoes that are infectious-are positively correlated. In fact, these two risk factors are generated by different processes and may be negatively correlated across space and time in heterogeneous environments. Uneven distribution of blood-meal hosts and larval habitat creates a spatial mosaic of demograPhic sources and sinks. Moreover, mosquito populations fluctuate temporally, forced by environmental variables such as rainfall, temperature, and humidity. These sources of spatial and temporal heterogeneity in the distribution of mosquito populations generate variability in the human biting rate, in the proportion of mosquitoes that are infectious, and in the risk of human infection. To understand how heterogeneity affects the epidemiology of mosquito-borne infections, we developed a set of simple models that incorporate heterogeneity in a stepwise fashion. These models predict that the human biting rate is highest shortly after the mosquito densities peak, near breeding sites where adult mosquitoes emerge, and around the edges of areas where humans are aggregated. In contrast, the proportion of mosquitoes that are infectious reflects the age structure of mosquito populations; it peaks where old mosquitoes are found, far from mosquito breeding habitat, and when mosquito population density is declining. Finally, we show that estimates for the average risk of infection that are based on the average entomological inoculation rate are strongly biased in heterogeneous environments. Copyright:

Original languageEnglish (US)
JournalPLoS biology
Issue number11
StatePublished - Nov 2004
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology
  • General Agricultural and Biological Sciences


Dive into the research topics of 'The risk of a mosquito-borne infectionin a heterogeneous environment'. Together they form a unique fingerprint.

Cite this