The Pursuit of Knowledge: Discovering and Localizing Novel Categories using Dual Memory

Sai Saketh Rambhatla, Rama Chellappa, Abhinav Shrivastava

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We tackle object category discovery, which is the problem of discovering and localizing novel objects in a large unlabeled dataset. While existing methods show results on datasets with less cluttered scenes and fewer object instances per image, we present our results on the challenging COCO dataset. Moreover, we argue that, rather than discovering new categories from scratch, discovery algorithms can benefit from identifying what is already known and focusing their attention on the unknown. We propose a method that exploits prior knowledge about certain object types to discover new categories by leveraging two memory modules, namely Working and Semantic memory. We show the performance of our detector on the COCO minival dataset to demonstrate its in-the-wild capabilities.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages9133-9143
Number of pages11
ISBN (Electronic)9781665428125
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/11/2110/17/21

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'The Pursuit of Knowledge: Discovering and Localizing Novel Categories using Dual Memory'. Together they form a unique fingerprint.

Cite this