Abstract
The parametric g-formula can be used to contrast the distribution of potential outcomes under arbitrary treatment regimes. Like g-estimation of structural nested models and inverse probability weighting of marginal structural models, the parametric g-formula can appropriately adjust for measured time-varying confounders that are affected by prior treatment. However, there have been few implementations of the parametric g-formula to date. Here, we apply the parametric g-formula to assess the impact of highly active antiretroviral therapy on time to acquired immune deficiency syndrome (AIDS) or death in two US-based human immunodeficiency virus cohorts including 1498 participants. These participants contributed approximately 7300 person-years of follow-up (49% exposed to highly active antiretroviral therapy) during which 382 events occurred and 259 participants were censored because of dropout. Using the parametric g-formula, we estimated that antiretroviral therapy substantially reduces the hazard of AIDS or death (hazard ratio=0.55; 95% confidence limits [CL]: 0.42, 0.71). This estimate was similar to one previously reported using a marginal structural model, 0.54 (95% CL: 0.38, 0.78). The 6.5-year difference in risk of AIDS or death was 13% (95% CL: 8%, 18%). Results were robust to assumptions about temporal ordering, and extent of history modeled, for time-varying covariates. The parametric g-formula is a viable alternative to inverse probability weighting of marginal structural models and g-estimation of structural nested models for the analysis of complex longitudinal data.
Original language | English (US) |
---|---|
Pages (from-to) | 2000-2009 |
Number of pages | 10 |
Journal | Statistics in Medicine |
Volume | 31 |
Issue number | 18 |
DOIs | |
State | Published - Aug 15 2012 |
Keywords
- Cohort study
- Confounding
- G-formula
- HIV/AIDS
- Monte Carlo methods
ASJC Scopus subject areas
- Epidemiology
- Statistics and Probability