The mitochondrial origin of postischemic arrhythmias

Fadi Gabriel Akar, Miguel Antonio Aon, Gordon F. Tomaselli, Brian O'Rourke

Research output: Contribution to journalArticlepeer-review

246 Scopus citations


Recovery of the mitochondrial inner membrane potential (Δψ m) is a key determinant of postischemic functional recovery of the heart. Mitochondrial ROS-induced ROS release causes the collapse of Δψm and the destabilization of the action potential (AP) through a mechanism involving a mitochondrial inner membrane anion channel (IMAC) modulated by the mitochondrial benzodiazepine receptor (mBzR). Here, we test the hypothesis that this mechanism contributes to spatiotemporal heterogeneity of Δψm during ischemia-reperfusion (IR), thereby promoting abnormal electrical activation and arrhythmias in the whole heart. High-resolution optical AP mapping was performed in perfused guinea pig hearts subjected to 30 minutes of global ischemia followed by reperfusion. Typical electrophysiological responses, including progressive AP shortening followed by membrane inexcitablity in ischemia and ventricular fibrillation upon reperfusion, were observed in control hearts. These responses were reduced or eliminated by treatment with the mBzR antagonist 4′-chlorodiazepam (4′-Cl-DZP), which blocks depolarization of Δψm. When applied throughout the IR protocol, 4′-Cl-DZP blunted AP shortening and prevented reperfusion arrhythmias. Inhibition of ventricular fibrillation was also achieved by bolus infusion of 4′-Cl-DZP just before reperfusion. Conversely, treatment with an agonist of the mBzR that promotes Δψm depolarization exacerbated IR-induced electrophysiological changes and failed to prevent arrhythmias. The effects of these compounds were consistent with their actions on IMAC and Δψm. These findings directly link instability of Δψm to the heterogeneous electrophysiological substrate of the postischemic heart and highlight the mitochondrial membrane as a new therapeutic target for arrhythmia prevention in ischemic heart disease.

Original languageEnglish (US)
Pages (from-to)3527-3535
Number of pages9
JournalJournal of Clinical Investigation
Issue number12
StatePublished - Dec 2005

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'The mitochondrial origin of postischemic arrhythmias'. Together they form a unique fingerprint.

Cite this