TY - JOUR
T1 - The impact of dental metal artifacts on head and neck IMRT dose distributions
AU - Kim, Yusung
AU - Tomé, Wolfgang A.
AU - Bal, Matthieu
AU - McNutt, Todd R.
AU - Spies, Lothar
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2006/5
Y1 - 2006/5
N2 - Background and purposes: To quantify the cold or hot spot induced in IMRT treatment plans due to the presence of metal artifact in CT image data sets stemming from dental work. Patients and methods: Metal artifact corrected image data sets of five patients have been analyzed. IMRT plans were generated using five different planning image data sets: (a) uncorrected (UC) (b) homogeneous uncorrected (HUC), (c) sinogram completion corrected (SCC), (d) minimum value corrected (MVC), and (e) image set (d) subsequently corrected with a streak artifacts reduction algorithm (SAR-MVC). The SAR-MVC data set is assumed to be the closest approximation to the absence of metal artifacts and has therefore been taken as the reference image data set. An IMRT plan was generated for each of the image datasets (a)-(e). The resulting IMRT treatment plans for data sets (a)-(d) were then projected onto the reference data set (e) and recalculated. The reference dose distribution (e) was then subtracted from these recalculated dose distributions. Using dose difference analysis, the cold and hot spots in organs at risk (OARs) and the target volumes (TVs) were quantified. Results: When compared to the reference dose distribution, the UC, HUC, and SCC plans exhibited hot spots showing on average more than 1.0 Gy hot dose in the left and right parotids. For the UC, HUC, and SCC recalculated plans, subvolumes of the clinical target volumes (CTV) were under dosed on average by more than 0.9 Gy. On the other hand, the MVC plan showed less than 0.3 Gy hot dose in both parotids, and the cold dose in the CTVs were reduced by up to 0.8 Gy. Conclusions: The presence of dental metal artifacts in head and neck planning CT data sets can lead to relative hot spots in OARs and relative cold spots in regions of the TVs when compared to the reference data set that more closely approximates the patient anatomy. This effect can be reduced if a simple minimum value correction (MVC) method for the dental metal artifacts is employed.
AB - Background and purposes: To quantify the cold or hot spot induced in IMRT treatment plans due to the presence of metal artifact in CT image data sets stemming from dental work. Patients and methods: Metal artifact corrected image data sets of five patients have been analyzed. IMRT plans were generated using five different planning image data sets: (a) uncorrected (UC) (b) homogeneous uncorrected (HUC), (c) sinogram completion corrected (SCC), (d) minimum value corrected (MVC), and (e) image set (d) subsequently corrected with a streak artifacts reduction algorithm (SAR-MVC). The SAR-MVC data set is assumed to be the closest approximation to the absence of metal artifacts and has therefore been taken as the reference image data set. An IMRT plan was generated for each of the image datasets (a)-(e). The resulting IMRT treatment plans for data sets (a)-(d) were then projected onto the reference data set (e) and recalculated. The reference dose distribution (e) was then subtracted from these recalculated dose distributions. Using dose difference analysis, the cold and hot spots in organs at risk (OARs) and the target volumes (TVs) were quantified. Results: When compared to the reference dose distribution, the UC, HUC, and SCC plans exhibited hot spots showing on average more than 1.0 Gy hot dose in the left and right parotids. For the UC, HUC, and SCC recalculated plans, subvolumes of the clinical target volumes (CTV) were under dosed on average by more than 0.9 Gy. On the other hand, the MVC plan showed less than 0.3 Gy hot dose in both parotids, and the cold dose in the CTVs were reduced by up to 0.8 Gy. Conclusions: The presence of dental metal artifacts in head and neck planning CT data sets can lead to relative hot spots in OARs and relative cold spots in regions of the TVs when compared to the reference data set that more closely approximates the patient anatomy. This effect can be reduced if a simple minimum value correction (MVC) method for the dental metal artifacts is employed.
KW - Head and neck
KW - Metal artifacts
KW - Treatment planning
UR - http://www.scopus.com/inward/record.url?scp=33745080243&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33745080243&partnerID=8YFLogxK
U2 - 10.1016/j.radonc.2006.03.022
DO - 10.1016/j.radonc.2006.03.022
M3 - Article
C2 - 16677729
AN - SCOPUS:33745080243
SN - 0167-8140
VL - 79
SP - 198
EP - 202
JO - Radiotherapy and Oncology
JF - Radiotherapy and Oncology
IS - 2
ER -