The impact of common and rare genetic variants on bradyarrhythmia development

FinnGen, Million Veteran Program, Regeneron Genetics Center

Research output: Contribution to journalArticlepeer-review

Abstract

To broaden our understanding of bradyarrhythmias and conduction disease, we performed common variant genome-wide association analyses in up to 1.3 million individuals and rare variant burden testing in 460,000 individuals for sinus node dysfunction (SND), distal conduction disease (DCD) and pacemaker (PM) implantation. We identified 13, 31 and 21 common variant loci for SND, DCD and PM, respectively. Four well-known loci (SCN5A/SCN10A, CCDC141, TBX20 and CAMK2D) were shared for SND and DCD, while others were more specific for SND or DCD. SND and DCD showed a moderate genetic correlation (rg = 0.63). Cardiomyocyte-expressed genes were enriched for contributions to DCD heritability. Rare-variant analyses implicated LMNA for all bradyarrhythmia phenotypes, SMAD6 and SCN5A for DCD and TTN, MYBPC3 and SCN5A for PM. These results show that variation in multiple genetic pathways (for example, ion channel function, cardiac developmental programs, sarcomeric structure and cellular homeostasis) appear critical to the development of bradyarrhythmias.

Original languageEnglish (US)
Article numbere006273
Pages (from-to)53-64
Number of pages12
JournalNature genetics
Volume57
Issue number1
DOIs
StatePublished - Jan 2025

ASJC Scopus subject areas

  • Genetics

Fingerprint

Dive into the research topics of 'The impact of common and rare genetic variants on bradyarrhythmia development'. Together they form a unique fingerprint.

Cite this