The galactose-specific recognition system of mammalian liver: The route of ligand internalization in rat hepatocytes

Doris A. Wall, G. Wilson, Ann L. Hubbard

Research output: Contribution to journalArticlepeer-review

288 Scopus citations


We have used two electron microscopic tracers, asialoorosomucoid covalently coupled to horseradish peroxidase (ASOR-HRP) and lactosaminated ferritin (Lac-Fer), to investigate the internalization of proteins bound by the asialoprotein receptor of rat hepatocytes. Both ligands are cleared rapidly from the circulation of rats, are retarded in their clearance by an excess of ASOR and accumulate principally in the liver. Morphological examination of the livers of rats after injection of the probes confirmed that the hepatocyte is the principal liver cell involved in the clearance of galactose-terminating proteins. Internalization occurred via coated pits and coated vesicles of 1000 Å diameter. At 30 sec to 2 min the tracers began to accumulate in a complex arrangement of larger smooth-surfaced vesicles and tubular structures at the sinusoidal periphery of the cell. Fluid phase pinocytosis did not appear to account for any of the uptake into larger vesicles. The particulate tracer, Lac-Fer, was closely apposed to the membrane of coated pits and vesicles, but was found scattered throughout the lumen of the larger vesicles, possibly indicating dissociation of the ligand from its receptor. Although occasional lysosomes were detected cytochemically in the cell periphery, vesicles containing Lac-Fer showed no demonstrable aryl sulfatase activity. At 5 min, the tracers began to appear in Golgilysosome regions of the hepatocyte and were present in small vesicles of <2000 Å in diameter, larger irregular vesicles and tubules. Serial sectioning indicated that tubular structures in Golgi-lysosome regions were often interconnected to the larger vesicles, but that tubules in the peripheral cytoplasm were only occasionally connected to larger structures. Some of the Lac-Fer-containing vesicles in Golgi-lysosome areas at 15 min after injection were found to contain aryl sulfatase reaction product, indicating fusion with lysosomes.

Original languageEnglish (US)
Pages (from-to)79-93
Number of pages15
Issue number1
StatePublished - 1980
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology


Dive into the research topics of 'The galactose-specific recognition system of mammalian liver: The route of ligand internalization in rat hepatocytes'. Together they form a unique fingerprint.

Cite this