TY - JOUR
T1 - The efficacy of receptor tyrosine kinase EphA2 autophosphorylation increases with EphA2 oligomer size
AU - Zapata-Mercado, Elmer
AU - Biener, Gabriel
AU - McKenzie, Daniel M.
AU - Wimley, William C.
AU - Pasquale, Elena B.
AU - Raicu, Valerica
AU - Hristova, Kalina
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/10
Y1 - 2022/10
N2 - The receptor tyrosine kinase (RTK) EphA2 is expressed in epithelial and endothelial cells and controls the assembly of cell–cell junctions. EphA2 has also been implicated in many diseases, including cancer. Unlike most RTKs, which signal predominantly as dimers, EphA2 readily forms high-order oligomers upon ligand binding. Here, we investigated if a correlation exists between EphA2 signaling properties and the size of the EphA2 oligomers induced by multiple ligands, including the widely used ephrinA1-Fc ligand, the soluble monomeric m-ephrinA1, and novel engineered peptide ligands. We used fluorescence intensity fluctuation (FIF) spectrometry to characterize the EphA2 oligomer populations induced by the different ligands. Interestingly, we found that different monomeric and dimeric ligands induce EphA2 oligomers with widely different size distributions. Our comparison of FIF brightness distribution parameters and EphA2 signaling parameters reveals that the efficacy of EphA2 phosphorylation on tyrosine 588, an autophosphorylation response contributing to EphA2 activation, correlates with EphA2 mean oligomer size. However, we found that other characteristics, such as the efficacy of AKT inhibition and ligand bias coefficients, appear to be independent of EphA2 oligomer size. Taken together, this work highlights the utility of FIF in RTK signaling research and demonstrates a quantitative correlation between the architecture of EphA2 signaling complexes and signaling features.
AB - The receptor tyrosine kinase (RTK) EphA2 is expressed in epithelial and endothelial cells and controls the assembly of cell–cell junctions. EphA2 has also been implicated in many diseases, including cancer. Unlike most RTKs, which signal predominantly as dimers, EphA2 readily forms high-order oligomers upon ligand binding. Here, we investigated if a correlation exists between EphA2 signaling properties and the size of the EphA2 oligomers induced by multiple ligands, including the widely used ephrinA1-Fc ligand, the soluble monomeric m-ephrinA1, and novel engineered peptide ligands. We used fluorescence intensity fluctuation (FIF) spectrometry to characterize the EphA2 oligomer populations induced by the different ligands. Interestingly, we found that different monomeric and dimeric ligands induce EphA2 oligomers with widely different size distributions. Our comparison of FIF brightness distribution parameters and EphA2 signaling parameters reveals that the efficacy of EphA2 phosphorylation on tyrosine 588, an autophosphorylation response contributing to EphA2 activation, correlates with EphA2 mean oligomer size. However, we found that other characteristics, such as the efficacy of AKT inhibition and ligand bias coefficients, appear to be independent of EphA2 oligomer size. Taken together, this work highlights the utility of FIF in RTK signaling research and demonstrates a quantitative correlation between the architecture of EphA2 signaling complexes and signaling features.
KW - cell signaling
KW - dimers
KW - fluorescence
KW - oligomers
KW - receptor tyrosine kinase
UR - http://www.scopus.com/inward/record.url?scp=85138452324&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85138452324&partnerID=8YFLogxK
U2 - 10.1016/j.jbc.2022.102370
DO - 10.1016/j.jbc.2022.102370
M3 - Article
C2 - 35970390
AN - SCOPUS:85138452324
SN - 0021-9258
VL - 298
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 10
M1 - 102370
ER -