Abstract
Piracetam is a nootropic agent that has been shown to improve cognitive performance in a number of animal model systems. Piracetam is reported to be used widely as a means of improving cognitive function in children with Down's syndrome (DS). In order to provide a preclinical assessment of the potential efficacy of piracetam, we examined the effects of a dose range of piracetam in the Ts65Dn mouse model of DS. Ts65Dn mice are trisomic for a region of mouse chromosome 16 with homology to human chromosome 21. Daily piracetam treatment at doses of 0, 75, 150, and 300 mg/kg ip was initiated in 6-week-old male Ts65Dn and euploid control mice. Following 4 weeks of treatment, mice were tested in the visible and hidden-platform components of the Morris water maze and were placed overnight in computerized activity chambers to assess effects on overall activity. Piracetam treatment was continued through the 4 weeks of testing. In control mice, 75 and 150 mg/kg/day piracetam improved performance in both the visible- and hidden-platform tasks. Although low doses of piracetam reduced search time in the visible-platform component in Ts65Dn mice, all piracetam doses prevented trial-related improvements in performance in Ts65Dn mice. The 300-mg/kg/day-piracetam dose was associated with a reversal of the nocturnal spontaneous hyperactivity in Ts65Dn. These data do not provide support for piracetam treatment for individuals with DS.
Original language | English (US) |
---|---|
Pages (from-to) | 403-409 |
Number of pages | 7 |
Journal | Physiology and Behavior |
Volume | 77 |
Issue number | 2-3 |
DOIs | |
State | Published - Nov 2002 |
Keywords
- Locomotor activity
- Morris water maze
- Mouse chromosome 16
- Noothophic drugs
- Ts65Dn
ASJC Scopus subject areas
- Experimental and Cognitive Psychology
- Behavioral Neuroscience