The angiotensin-I-converting enzyme inhibitor enalapril and aspirin delay progression of pancreatic intraepithelial neoplasia and cancer formation in a genetically engineered mouse model of pancreatic cancer

Volker Fendrich, Nai Ming Chen, Meike Neef, Jens Waldmann, Malte Buchholz, Georg Feldmann, Emily P. Slater, Anirban Maitra, Detlef K. Bartsch

Research output: Contribution to journalArticlepeer-review

76 Scopus citations

Abstract

Background and aims: There are no chemopreventive strategies for pancreatic cancer or its precursor lesions, pancreatic intraepithelial neoplasia (PanINs). Recent evidence suggests that aspirin and inhibitors of angiotensin-I converting enzyme (ACE inhibitors) have potential chemopreventive properties. In this study, we used a genetically engineered mouse model of pancreatic cancer to evaluate the chemopreventive potential of these drugs. Methods: Drug treatment was initiated at the age of 5 weeks. LsL-KrasG12D; Pdx1-Cre or LsL-KrasG12D; LsLTrp53 R172H; Pdx1-Cre transgenic mice were randomly assigned to receive either mock treatment, aspirin, enalapril, or a combination of both. After 3 and 5 months, animals were killed. The effect of aspirin and enalapril was evaluated by histopathological analyses, immunostaining, and real-time PCR. Results: After 3 and 5 months of treatment, enalapril and aspirin were able to significantly delay progression of mPanINs in LsL-KrasG12D; Pdx1-Cre mice. Furthermore, development of invasive pancreatic cancer in LsL-KrasG12D; LsL-Trp53R172H; Pdx1-Cre transgenic mice was partially inhibited by enalapril and aspirin. Invasive pancreatic cancer was identified in 15 of 25 (60%) LsL-Kras G12D; LsL-Trp53R172H; Pdx1-Cre untreated control mice, but in only three of 17 (17.6%, p=0.01) mice treated with aspirin, in four of 17 (23.5%, p=0.03) in mice treated with enalapril alone, and in five of 16 (31.2%, p=0.11) mice treated with a combination of both drugs. Using real-time PCR we found a significant downregulation of the target genes VEGF and RelA demonstrating our ability to achieve effective pharmacological levels of aspirin and enalapril during pancreatic cancer formation in vivo. Conclusion: Using a transgenic mouse model that imitates human pancreatic cancer, this study provides first evidence that aspirin and enalapril are effective chemopreventive agents by delaying the progression of PanINs and partially inhibiting the formation of murine pancreatic cancer. This study together supports the hypothesis that aspirin and ACE inhibitors might be a valid chemopreventive strategy.

Original languageEnglish (US)
Pages (from-to)630-637
Number of pages8
JournalGut
Volume59
Issue number5
DOIs
StatePublished - May 2010

ASJC Scopus subject areas

  • Gastroenterology

Fingerprint

Dive into the research topics of 'The angiotensin-I-converting enzyme inhibitor enalapril and aspirin delay progression of pancreatic intraepithelial neoplasia and cancer formation in a genetically engineered mouse model of pancreatic cancer'. Together they form a unique fingerprint.

Cite this