TY - JOUR
T1 - The action of bryostatin on normal human hematopoietic progenitors is mediated by accessory cell release of growth factors
AU - Sharkis, S. J.
AU - Jones, R. J.
AU - Bellis, M. L.
AU - Demetri, G. D.
AU - Griffin, J. D.
AU - Civin, C.
AU - May, W. S.
PY - 1990
Y1 - 1990
N2 - Since enrichment of human bone-marrow hematopoietic progenitors is becoming more feasible and since purified growth factors are now available, we sought to study the action of growth factors on CD34-positive enriched cultures of human bone-marrow cells. We tested the effect of recombinant human (rh) granulocyte-macrophage colony-stimulating factor (GM-CSF), rh interleukin-3 (IL-3), or a unique biologic response modifier, bryostatin 1, on the growth purified CD34 cells obtained by limiting dilution in single-cell cultures. We have shown previously that bryostatin 1 stimulates both myeloid and erythroid progenitors of human origin in vitro. In this study both IL-3 and GM-CSF supported colony formation from 500, 100, or single-cell cultures at equivalent plating efficiencies, suggesting a direct action of these factors on hematopoietic cell growth. Conversely, bryostatin 1 did not support the growth of CD34 cells in single-cell cultures, and the cloning efficiency increased with increasing the number of cells in the culture. To test whether the indirect action of bryostatin 1 might be mediated through the production of growth factors by accessory cells, studies were performed using antibodies directed against human IL-3 and GM-CSF in culture with bryostatin 1 and normal human bone-marrow cells. Results are consistent with the hypothesis that bryostatin 1 could have a stimulatory effect on the accessory cell populations to produce either IL-3 or GM-CSF. Further support for this notion was obtained by demonstrating that T cells, which are cells known to be able to produce IL-3 and GM-CSF, are stimulated by bryostatin 1 to express messenger RNA (mRNA) for specific growth factors, including GM-CSF. These results provide further support that bryostatin 1 may be a useful clinical agent to stimulate hematopoiesis in vivo.
AB - Since enrichment of human bone-marrow hematopoietic progenitors is becoming more feasible and since purified growth factors are now available, we sought to study the action of growth factors on CD34-positive enriched cultures of human bone-marrow cells. We tested the effect of recombinant human (rh) granulocyte-macrophage colony-stimulating factor (GM-CSF), rh interleukin-3 (IL-3), or a unique biologic response modifier, bryostatin 1, on the growth purified CD34 cells obtained by limiting dilution in single-cell cultures. We have shown previously that bryostatin 1 stimulates both myeloid and erythroid progenitors of human origin in vitro. In this study both IL-3 and GM-CSF supported colony formation from 500, 100, or single-cell cultures at equivalent plating efficiencies, suggesting a direct action of these factors on hematopoietic cell growth. Conversely, bryostatin 1 did not support the growth of CD34 cells in single-cell cultures, and the cloning efficiency increased with increasing the number of cells in the culture. To test whether the indirect action of bryostatin 1 might be mediated through the production of growth factors by accessory cells, studies were performed using antibodies directed against human IL-3 and GM-CSF in culture with bryostatin 1 and normal human bone-marrow cells. Results are consistent with the hypothesis that bryostatin 1 could have a stimulatory effect on the accessory cell populations to produce either IL-3 or GM-CSF. Further support for this notion was obtained by demonstrating that T cells, which are cells known to be able to produce IL-3 and GM-CSF, are stimulated by bryostatin 1 to express messenger RNA (mRNA) for specific growth factors, including GM-CSF. These results provide further support that bryostatin 1 may be a useful clinical agent to stimulate hematopoiesis in vivo.
UR - http://www.scopus.com/inward/record.url?scp=0025076580&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025076580&partnerID=8YFLogxK
U2 - 10.1182/blood.v76.4.716.716
DO - 10.1182/blood.v76.4.716.716
M3 - Article
C2 - 2200537
AN - SCOPUS:0025076580
SN - 0006-4971
VL - 76
SP - 716
EP - 720
JO - Blood
JF - Blood
IS - 4
ER -