Abstract
We derive and validate a simple statistical model that predicts the distribution of false matches between peaks in matrix-assisted laser desorption/ionization mass spectrometry data and proteins in proteome databases. The model allows us to calculate the significance of previously reported microorganism identification results. In particular, for Δm = ±1.5 Da, we find that the computed significance levels are sufficient to demonstrate the ability to identify microorganisms, provided the number of candidate microorganisms is limited to roughly three Escherichia coli-like or roughly 10 Bacillus subtilis-like microorganisms (in the sense of having roughly the same number of proteins per unit-mass interval). We conclude that, given the cluttered and incomplete nature of the data, it is likely that neither simple ranking nor simple hypothesis testing will be sufficient for truly robust microorganism identification over a large number of candidate microorganisms.
Original language | English (US) |
---|---|
Pages (from-to) | 3739-3744 |
Number of pages | 6 |
Journal | Analytical chemistry |
Volume | 72 |
Issue number | 16 |
DOIs | |
State | Published - Aug 15 2000 |
ASJC Scopus subject areas
- Analytical Chemistry