TY - JOUR
T1 - Tau is required for progressive synaptic and memory deficits in a transgenic mouse model of α-synucleinopathy
AU - Singh, Balvindar
AU - Covelo, Ana
AU - Martell-Martínez, Héctor
AU - Nanclares, Carmen
AU - Sherman, Mathew A.
AU - Okematti, Emmanuel
AU - Meints, Joyce
AU - Teravskis, Peter J.
AU - Gallardo, Christopher
AU - Savonenko, Alena V.
AU - Benneyworth, Michael A.
AU - Lesné, Sylvain E.
AU - Liao, Dezhi
AU - Araque, Alfonso
AU - Lee, Michael K.
N1 - Funding Information:
We thank Drs. Keith Vossel and Scott Vermilyea for their thoughtful discussion. We would also like to thank Dr. Mark Sanders of the University Imaging Centers at the University of Minnesota for his experimental and technical expertise and support.
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/10/1
Y1 - 2019/10/1
N2 - Parkinson’s disease dementia (PDD) and dementia with Lewy bodies (DLB) are clinically and neuropathologically highly related α-synucleinopathies that collectively constitute the second leading cause of neurodegenerative dementias. Genetic and neuropathological studies directly implicate α-synuclein (αS) abnormalities in PDD and DLB pathogenesis. However, it is currently unknown how αS abnormalities contribute to memory loss, particularly since forebrain neuronal loss in PDD and DLB is less severe than in Alzheimer’s disease. Previously, we found that familial Parkinson’s disease-linked human mutant A53T αS causes aberrant localization of the microtubule-associated protein tau to postsynaptic spines in neurons, leading to postsynaptic deficits. Thus, we directly tested if the synaptic and memory deficits in a mouse model of α-synucleinopathy (TgA53T) are mediated by tau. TgA53T mice exhibit progressive memory deficits associated with postsynaptic deficits in the absence of obvious neuropathological and neurodegenerative changes in the hippocampus. Significantly, removal of endogenous mouse tau expression in TgA53T mice (TgA53T/mTau−/−), achieved by mating TgA53T mice to mouse tau-knockout mice, completely ameliorates cognitive dysfunction and concurrent synaptic deficits without affecting αS expression or accumulation of selected toxic αS oligomers. Among the known tau-dependent effects, memory deficits in TgA53T mice were associated with hippocampal circuit remodeling linked to chronic network hyperexcitability. This remodeling was absent in TgA53T/mTau−/− mice, indicating that postsynaptic deficits, aberrant network hyperactivity, and memory deficits are mechanistically linked. Our results directly implicate tau as a mediator of specific human mutant A53T αS-mediated abnormalities related to deficits in hippocampal neurotransmission and suggest a mechanism for memory impairment that occurs as a consequence of synaptic dysfunction rather than synaptic or neuronal loss. We hypothesize that these initial synaptic deficits contribute to network hyperexcitability which, in turn, exacerbate cognitive dysfunction. Our results indicate that these synaptic changes present potential therapeutic targets for amelioration of memory deficits in α-synucleinopathies.
AB - Parkinson’s disease dementia (PDD) and dementia with Lewy bodies (DLB) are clinically and neuropathologically highly related α-synucleinopathies that collectively constitute the second leading cause of neurodegenerative dementias. Genetic and neuropathological studies directly implicate α-synuclein (αS) abnormalities in PDD and DLB pathogenesis. However, it is currently unknown how αS abnormalities contribute to memory loss, particularly since forebrain neuronal loss in PDD and DLB is less severe than in Alzheimer’s disease. Previously, we found that familial Parkinson’s disease-linked human mutant A53T αS causes aberrant localization of the microtubule-associated protein tau to postsynaptic spines in neurons, leading to postsynaptic deficits. Thus, we directly tested if the synaptic and memory deficits in a mouse model of α-synucleinopathy (TgA53T) are mediated by tau. TgA53T mice exhibit progressive memory deficits associated with postsynaptic deficits in the absence of obvious neuropathological and neurodegenerative changes in the hippocampus. Significantly, removal of endogenous mouse tau expression in TgA53T mice (TgA53T/mTau−/−), achieved by mating TgA53T mice to mouse tau-knockout mice, completely ameliorates cognitive dysfunction and concurrent synaptic deficits without affecting αS expression or accumulation of selected toxic αS oligomers. Among the known tau-dependent effects, memory deficits in TgA53T mice were associated with hippocampal circuit remodeling linked to chronic network hyperexcitability. This remodeling was absent in TgA53T/mTau−/− mice, indicating that postsynaptic deficits, aberrant network hyperactivity, and memory deficits are mechanistically linked. Our results directly implicate tau as a mediator of specific human mutant A53T αS-mediated abnormalities related to deficits in hippocampal neurotransmission and suggest a mechanism for memory impairment that occurs as a consequence of synaptic dysfunction rather than synaptic or neuronal loss. We hypothesize that these initial synaptic deficits contribute to network hyperexcitability which, in turn, exacerbate cognitive dysfunction. Our results indicate that these synaptic changes present potential therapeutic targets for amelioration of memory deficits in α-synucleinopathies.
KW - Dementia
KW - Lewy body disease
KW - Neuronal plasticity
KW - Parkinson’s disease
KW - Tau
KW - α-Synuclein
UR - http://www.scopus.com/inward/record.url?scp=85067043591&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85067043591&partnerID=8YFLogxK
U2 - 10.1007/s00401-019-02032-w
DO - 10.1007/s00401-019-02032-w
M3 - Article
C2 - 31168644
AN - SCOPUS:85067043591
SN - 0001-6322
VL - 138
SP - 551
EP - 574
JO - Acta Neuropathologica
JF - Acta Neuropathologica
IS - 4
ER -