TY - GEN
T1 - Task-driven orbit design and implementation on a robotic C-arm system for cone-beam CT
AU - Ouadah, S.
AU - Jacobson, Matthew
AU - Stayman, J. W.
AU - Ehtiati, T.
AU - Weiss, C.
AU - Siewerdsen, J. H.
N1 - Funding Information:
This research is supported by NIH Grant No. R01-EB-017226 and Siemens Healthcare (AT, Forcheim, Germany). The authors thank Mr. Robert Meyer (Siemens Healthineers) and Ms. Robin Belcher (Department of Radiology, Johns Hopkins University) for assistance with the imaging system.
Publisher Copyright:
© 2017 SPIE.
PY - 2017
Y1 - 2017
N2 - Purpose: This work applies task-driven optimization to the design of non-circular orbits that maximize imaging performance for a particular imaging task. First implementation of task-driven imaging on a clinical robotic C-arm system is demonstrated, and a framework for orbit calculation is described and evaluated. Methods: We implemented a task-driven imaging framework to optimize orbit parameters that maximize detectability index d'. This framework utilizes a specified Fourier domain task function and an analytical model for system spatial resolution and noise. Two experiments were conducted to test the framework. First, a simple task was considered consisting of frequencies lying entirely on the fz-axis (e.g., discrimination of structures oriented parallel to the central axial plane), and a "circle + arc" orbit was incorporated into the framework as a means to improve sampling of these frequencies, and thereby increase task-based detectability. The orbit was implemented on a robotic C-arm (Artis Zeego, Siemens Healthcare). A second task considered visualization of a cochlear implant simulated within a head phantom, with spatial frequency response emphasizing high-frequency content in the (fy, fz) plane of the cochlea. An optimal orbit was computed using the task-driven framework, and the resulting image was compared to that for a circular orbit. Results: For the fz-axis task, the circle + arc orbit was shown to increase d' by a factor of 1.20, with an improvement of 0.71 mm in a 3D edge-spread measurement for edges located far from the central plane and a decrease in streak artifacts compared to a circular orbit. For the cochlear implant task, the resulting orbit favored complementary views of high tilt angles in a 360° orbit, and d' was increased by a factor of 1.83. Conclusions: This work shows that a prospective definition of imaging task can be used to optimize source-detector orbit and improve imaging performance. The method was implemented for execution of non-circular, task-driven orbits on a clinical robotic C-arm system. The framework is sufficiently general to include both acquisition parameters (e.g., orbit, kV, and mA selection) and reconstruction parameters (e.g., a spatially varying regularizer).
AB - Purpose: This work applies task-driven optimization to the design of non-circular orbits that maximize imaging performance for a particular imaging task. First implementation of task-driven imaging on a clinical robotic C-arm system is demonstrated, and a framework for orbit calculation is described and evaluated. Methods: We implemented a task-driven imaging framework to optimize orbit parameters that maximize detectability index d'. This framework utilizes a specified Fourier domain task function and an analytical model for system spatial resolution and noise. Two experiments were conducted to test the framework. First, a simple task was considered consisting of frequencies lying entirely on the fz-axis (e.g., discrimination of structures oriented parallel to the central axial plane), and a "circle + arc" orbit was incorporated into the framework as a means to improve sampling of these frequencies, and thereby increase task-based detectability. The orbit was implemented on a robotic C-arm (Artis Zeego, Siemens Healthcare). A second task considered visualization of a cochlear implant simulated within a head phantom, with spatial frequency response emphasizing high-frequency content in the (fy, fz) plane of the cochlea. An optimal orbit was computed using the task-driven framework, and the resulting image was compared to that for a circular orbit. Results: For the fz-axis task, the circle + arc orbit was shown to increase d' by a factor of 1.20, with an improvement of 0.71 mm in a 3D edge-spread measurement for edges located far from the central plane and a decrease in streak artifacts compared to a circular orbit. For the cochlear implant task, the resulting orbit favored complementary views of high tilt angles in a 360° orbit, and d' was increased by a factor of 1.83. Conclusions: This work shows that a prospective definition of imaging task can be used to optimize source-detector orbit and improve imaging performance. The method was implemented for execution of non-circular, task-driven orbits on a clinical robotic C-arm system. The framework is sufficiently general to include both acquisition parameters (e.g., orbit, kV, and mA selection) and reconstruction parameters (e.g., a spatially varying regularizer).
UR - http://www.scopus.com/inward/record.url?scp=85020401669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85020401669&partnerID=8YFLogxK
U2 - 10.1117/12.2255646
DO - 10.1117/12.2255646
M3 - Conference contribution
C2 - 28989219
AN - SCOPUS:85020401669
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2017
A2 - Schmidt, Taly Gilat
A2 - Lo, Joseph Y.
A2 - Flohr, Thomas G.
PB - SPIE
T2 - Medical Imaging 2017: Physics of Medical Imaging
Y2 - 13 February 2017 through 16 February 2017
ER -