Abstract
Generation and precise genetic correction of patient-derived hiPSCs have great potential in regenerative medicine. Such targeted genetic manipulations can now be achieved using gene-editing nucleases. Here, we report generation of cystic fibrosis (CF) and Gaucher’s disease (GD) hiPSCs respectively from CF (homozygous for CFTR F508 mutation) and Type II GD [homozygous for -glucocerebrosidase (GBA) 1448T>C mutation] patient fibroblasts, using CCR5-specific TALENs. Site-specific addition of loxP-flanked Oct4/Sox2/Klf4/Lin28/Nanog/eGFP gene cassette at the endogenous CCR5 site of patient-derived disease-specific primary fibroblasts induced reprogramming, giving rise to both monoallele (heterozygous) and biallele CCR5-modified hiPSCs. Subsequent excision of the donor cassette was done by treating CCR5-modified CF and GD hiPSCs with Cre. We also demonstrate site-specific correction of sickle cell disease (SCD) mutations at the endogenous HBB locus of patient-specific hiPSCs [TNC1 line that is homozygous for mutated β-globin alleles (βS/βS)], using HBB-specific TALENs. SCD-corrected hiPSC lines showed gene conversion of the mutated S to the wild-type A in one of the HBB alleles, while the other allele remained a mutant phenotype. After excision of the loxP-flanked DNA cassette from the SCD-corrected hiPSC lines using Cre, we obtained secondary heterozygous βS/βA hiPSCs, which express the wild-type (βA) transcript to 30-40% level as compared to uncorrected (βS/βS) SCD hiPSCs when differentiated into erythroid cells. Furthermore, we also show that TALEN-mediated generation and genetic correction of disease-specific hiPSCs did not induce any off-target mutations at closely related sites.
Original language | English (US) |
---|---|
Pages (from-to) | 461-472 |
Number of pages | 12 |
Journal | Current Gene Therapy |
Volume | 14 |
Issue number | 6 |
DOIs | |
State | Published - Jan 1 2014 |
Keywords
- Cystic fibrosis (CF)
- Gaucher’s disease (GD)
- Gene correction
- Sickle cell disease (SCD)
- Transcription activatorlike effector nucleases (TALENs)
- Zinc finger nucleases (ZFNs)
ASJC Scopus subject areas
- Molecular Medicine
- Molecular Biology
- Genetics
- Drug Discovery
- Genetics(clinical)