TAILOR: Transgene activation and inactivation using lox and rox in zebrafish

Joon Tae Park, Steven D. Leach

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

The ability to achieve precisely tailored activation and inactivation of gene expression represents a critical utility for vertebrate model organisms. In this regard, Cre and other site-specific DNA recombinases have come to play a central role in achieving temporally regulated and cell type-specific genetic manipulation. In zebrafish, both Cre and Flp recombinases have been applied for inducible activation, inactivation and inversion of inserted genomic elements. Here we describe the addition of Dre, a heterospecific Cre-related site-specific recombinase, to the zebrafish genomic toolbox. Combining Drebased recombination in zebrafish with established Cre/lox technology, we have established an effective strategy for transgene activation and inactivation using lox and rox (TAILOR). Using stable transgenic lines expressing tamoxifeninducible CreERT2 and RU486-inducible DrePR fusions, we demonstrate that Cre and Dre retain non-overlapping specificities for their respective lox and rox target sites in larval zebrafish, and that their combinatorial and sequential activation can achieve precisely timed transgene activation and inactivation. In addition to TAILOR, the successful application of Dre/rox technology in zebrafish will facilitate a variety of additional downstream genetic applications, including sequential lineage labeling, complex genomic rearrangements and the precise temporal and spatial control of gene expression through the intersection of partially overlapping promoter activities.

Original languageEnglish (US)
Article numbere85218
JournalPloS one
Volume8
Issue number12
DOIs
StatePublished - Dec 31 2013
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'TAILOR: Transgene activation and inactivation using lox and rox in zebrafish'. Together they form a unique fingerprint.

Cite this