T cell receptor-targeted immunotherapeutics drive selective in vivo HIV- And CMV-specific T cell expansion in humanized mice

Mengyan Li, Scott J. Garforth, Kaitlyn E. O'Connor, Hang Su, Danica M. Lee, Alev Celikgil, Rodolfo J. Chaparro, Ronald D. Seidel, R. Brad Jones, Ravit Arav-Boger, Steven C. Almo, Harris Goldstein

Research output: Contribution to journalArticlepeer-review

Abstract

To delineate the in vivo role of different costimulatory signals in activating and expanding highly functional virus-specific cytotoxic CD8+ T cells, we designed synTacs, infusible biologics that recapitulate antigen-specific T cell activation signals delivered by antigen-presenting cells. We constructed synTacs consisting of dimeric Fc-domain scaffolds linking CD28- or 4-1BB-specific ligands to HLA-A2 MHC molecules covalently tethered to HIV- or CMV-derived peptides. Treatment of HIV-infected donor PBMCs with synTacs bearing HIV- or CMV-derived peptides induced vigorous and selective ex vivo expansion of highly functional HIV- and/or CMV-specific CD8+ T cells, respectively, with potent antiviral activities. Intravenous injection of HIV- or CMV-specific synTacs into immunodeficient mice intrasplenically engrafted with donor PBMCs markedly and selectively expanded HIV-specific (32-fold) or CMV-specific (46-fold) human CD8+ T cells populating their spleens. Notably, these expanded HIV- or CMV-specific CD8+ T cells directed potent in vivo suppression of HIV or CMV infections in the humanized mice, providing strong rationale for consideration of synTac-based approaches as a therapeutic strategy to cure HIV and treat CMV and other viral infections. The synTac platform flexibility supports facile delineation of in vivo effects of different costimulatory signals on patient-derived virus-specific CD8+ T cells, enabling optimization of individualized therapies, including HIV cure strategies.

Original languageEnglish (US)
Article numbere141051
JournalJournal of Clinical Investigation
Volume131
Issue number23
DOIs
StatePublished - Dec 1 2021

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'T cell receptor-targeted immunotherapeutics drive selective in vivo HIV- And CMV-specific T cell expansion in humanized mice'. Together they form a unique fingerprint.

Cite this