TY - JOUR
T1 - Synthetic radial aperture focusing to regulate manual volumetric scanning for economic transrectal ultrasound imaging
AU - Song, Hyunwoo
AU - Kang, Jeeun
AU - Boctor, Emad M.
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2023/3
Y1 - 2023/3
N2 - In this paper, we present a volumetric transrectal ultrasound (TRUS) imaging under the presence of radial scanning angle disorientation (SAD) in a resource-limited diagnostic setting. Herein, we test our hypothesis that a synthetic radial aperture focusing (TRUS-rSAF) technique, in which a radial plane in target volume is reconstructed by coherent compounding of multiple transmittance/reception events, will reject a randomized SAD in a free-hand scanning setup based on external angular tracking. Based on an analytical model of the TRUS-rSAF technique, we first tested specific scenarios using a clinically available TRUS transducer under different SADs in a range of normal distributions (σ = 0.1°, 0.2°, 0.5°, 1°, 2°, and 5°). We found a benefit of the TRUS-rSAF technique for higher robustness when the SAD is contained within the radial synthetic aperture window, i.e., ±0.71° from a target scanning angle. However, no enhancement was found in spatial resolution because of the limited transmit beam field of the clinical TRUS transducer, limiting the synthetic aperture window. We further evaluated the TRUS-rSAF technique with a modified TRUS transducer for an extended synthetic aperture window to test whether higher spatial resolution and robustness to SAD can be obtained in the same evaluation setup. Widening of the synthetic aperture window (±3.54°, ± 5.91°, ± 8.27°, ± 10.63°, ± 12.99°, ± 15.35°) resulted in proportional enhancements of spatial resolution, but it also progressively built up sidelobe artifacts due to randomized synthesis with limited phase cancellations. The results suggest the need for careful calibration of the TRUS-rSAF technique to enable TRUS imaging with free-hand radial scanning and external angle tracking in resource-limited settings.
AB - In this paper, we present a volumetric transrectal ultrasound (TRUS) imaging under the presence of radial scanning angle disorientation (SAD) in a resource-limited diagnostic setting. Herein, we test our hypothesis that a synthetic radial aperture focusing (TRUS-rSAF) technique, in which a radial plane in target volume is reconstructed by coherent compounding of multiple transmittance/reception events, will reject a randomized SAD in a free-hand scanning setup based on external angular tracking. Based on an analytical model of the TRUS-rSAF technique, we first tested specific scenarios using a clinically available TRUS transducer under different SADs in a range of normal distributions (σ = 0.1°, 0.2°, 0.5°, 1°, 2°, and 5°). We found a benefit of the TRUS-rSAF technique for higher robustness when the SAD is contained within the radial synthetic aperture window, i.e., ±0.71° from a target scanning angle. However, no enhancement was found in spatial resolution because of the limited transmit beam field of the clinical TRUS transducer, limiting the synthetic aperture window. We further evaluated the TRUS-rSAF technique with a modified TRUS transducer for an extended synthetic aperture window to test whether higher spatial resolution and robustness to SAD can be obtained in the same evaluation setup. Widening of the synthetic aperture window (±3.54°, ± 5.91°, ± 8.27°, ± 10.63°, ± 12.99°, ± 15.35°) resulted in proportional enhancements of spatial resolution, but it also progressively built up sidelobe artifacts due to randomized synthesis with limited phase cancellations. The results suggest the need for careful calibration of the TRUS-rSAF technique to enable TRUS imaging with free-hand radial scanning and external angle tracking in resource-limited settings.
KW - Image Reconstruction
KW - Synthetic radial aperture focusing
KW - Transrectal ultrasound
KW - Volumetric
UR - http://www.scopus.com/inward/record.url?scp=85144031055&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144031055&partnerID=8YFLogxK
U2 - 10.1016/j.ultras.2022.106908
DO - 10.1016/j.ultras.2022.106908
M3 - Article
C2 - 36527822
AN - SCOPUS:85144031055
SN - 0041-624X
VL - 129
JO - Ultrasonics
JF - Ultrasonics
M1 - 106908
ER -