Synthesis, characterization, and in vitro activity of dendrimer- streptokinase conjugates

Xiangtao Wang, Rajyalakshmi Inapagolla, Sujatha Kannan, Mary Lieh-Lai, Rangaramanujam M. Kannan

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Dendrimer conjugation with low molecular weight drugs has been of increasing interest recently for improving pharmacokinetics, targeting drugs to specific sites, and facilitating cellular uptake. Opportunities for increasing the performance of relatively large therapeutic proteins such as streptokinase (SK) using dendrimers are being explored in this study. Using the active ester method, a series of streptokinase-poly(amido amine) (PAMAM) G3.5 conjugates were synthesized with varying amounts of dendrimer-to-protein molar ratios. Characterization of these conjugates by GPC, IEC, and native-PAGE suggested that the conjugation reaction was successful, resulting in relatively pure SK-dendrimer conjugates. The conjugate made with an equimolar ratio of dendrimer to streptokinase (1:1) exhibited the highest enzymatic activity retention (∼80% retained) that has been reported so far for conjugated streptokinase with macromolecules such as PEG or dextran. SK conjugates with higher streptokinase-to-dendrimer molar ratios (1:10 and 1:20) exhibited lower initial enzymatic activities. However, these conjugates showed sustained thrombolytic activity in plasma, perhaps due to the release of SK from the conjugate. All of the SK conjugates displayed significantly improved stability in phosphate buffer solution, compared to free SK. The high coupling reaction efficiencies and the resulting high enzymatic activity retention achieved in this study could enable a desirable way for modifying many bioactive macromolecules with dendrimers.

Original languageEnglish (US)
Pages (from-to)791-799
Number of pages9
JournalBioconjugate Chemistry
Volume18
Issue number3
DOIs
StatePublished - 2007
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Synthesis, characterization, and in vitro activity of dendrimer- streptokinase conjugates'. Together they form a unique fingerprint.

Cite this