TY - JOUR
T1 - Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter
AU - Zhang, Hanwen
AU - Huang, Ruimin
AU - Pillarsetty, Naga Vara Kishore
AU - Thorek, Daniel L.J.
AU - Vaidyanathan, Ganesan
AU - Serganova, Inna
AU - Blasberg, Ronald G.
AU - Lewis, Jason S.
N1 - Funding Information:
Acknowledgments This work was supported by NIH grant P50 CA84638. We appreciate the assistance of staff from the MSKCC Small Animal Imaging Core Facility for the PET imaging and the MSKCC Radiochemistry & Molecular Imaging Probe Core for 18F production. These MSKCC Cores were supported by the NIH Center grant P30 CA08748. DLJT was supported by the R25T Molecular Imaging Fellowship: Molecular Imaging Training in Oncology (5R25CA096945-07; Principal investigator H. Hricak). We also thank Dr. Diane Abou for PET imaging assistance and valuable discussion. Dedicated to Prof. H. Maecke on the occasion of his 70th birthday.
PY - 2014
Y1 - 2014
N2 - Purpose: Both 131I- and 123I-labeled meta-iodobenzyl-guanidine (MIBG) have been widely used in the clinic for targeted imaging of the norepinephrine transporter (NET). The human NET (hNET) gene has been imaged successfully with 124I-MIBG positron emission tomography (PET) at time points of >24 h post-injection (p.i.). 18F-labeled MIBG analogs may be ideal to image hNETexpression at time points of <8 h p.i. We developed improved methods for the synthesis of known MIBG analogs, [18F]MFBG and [18F]PFBG and evaluated them in hNET reporter gene-transduced C6 rat glioma cells and xenografts. Methods: [18F]MFBG and [18F]PFBG were synthesized manually using a three-step synthetic scheme. Wild-type and hNET reporter gene-transduced C6 rat glioma cells and xenografts were used to comparatively evaluate the 18F-labeled analogs with [123I]/[124I]MIBG. Results: The fluorination efficacy on benzonitrile was predominantly determined by the position of the trimethylammonium group. The para-isomer afforded higher yields (75±7 %) than meta-isomer (21±5 %). The reaction of [ 18F]fluorobenzylamine with 1H-pyrazole-1-carboximidamide was more efficient than with 2-methyl-2-thiopseudourea. The overall radiochemical yields (decay-corrected) were 11±2 % (n =12) for [18F]MFBG and 41±12 % (n =5) for [18F]PFBG, respectively. The specific uptakes of [18F]MFBG and [18F]PFBG were similar in C6-hNET cells, but 4-fold less than that of [123I]/[124I]MIBG. However, in vivo [18F]MFBG accumulation in C6-hNET tumors was 1.6-fold higher than that of [18F]PFBG at 1 h p.i., whereas their uptakes were similar at 4 h. Despite [18F]MFBG having a 2.8-fold lower affinity to hNET and approximately 4-fold lower cell uptake in vitro compared to [123I]/[124I]MIBG, PET imaging demonstrated that [18F]MFBG was able to visualize C6-hNET xenografts better than [124I]MIBG. Biodistribution studies showed [18F]MFBG and 123I-MIBG had a similar tumor accumulation, which was lower than that of no-carrier-added [124I]MIBG, but [18F]MFBG showed a significantly more rapid body clearance and lower uptake in most non-targeting organs. Conclusion: [18F]MFBG and [18F]PFBG were synthesized in reasonable radiochemical yields under milder conditions. [ 18F]MFBG is a better PET ligand to image hNET expression in vivo at 1-4 h p.i. than both [18F]PFBG and [123I]/[ 124I]MIBG.
AB - Purpose: Both 131I- and 123I-labeled meta-iodobenzyl-guanidine (MIBG) have been widely used in the clinic for targeted imaging of the norepinephrine transporter (NET). The human NET (hNET) gene has been imaged successfully with 124I-MIBG positron emission tomography (PET) at time points of >24 h post-injection (p.i.). 18F-labeled MIBG analogs may be ideal to image hNETexpression at time points of <8 h p.i. We developed improved methods for the synthesis of known MIBG analogs, [18F]MFBG and [18F]PFBG and evaluated them in hNET reporter gene-transduced C6 rat glioma cells and xenografts. Methods: [18F]MFBG and [18F]PFBG were synthesized manually using a three-step synthetic scheme. Wild-type and hNET reporter gene-transduced C6 rat glioma cells and xenografts were used to comparatively evaluate the 18F-labeled analogs with [123I]/[124I]MIBG. Results: The fluorination efficacy on benzonitrile was predominantly determined by the position of the trimethylammonium group. The para-isomer afforded higher yields (75±7 %) than meta-isomer (21±5 %). The reaction of [ 18F]fluorobenzylamine with 1H-pyrazole-1-carboximidamide was more efficient than with 2-methyl-2-thiopseudourea. The overall radiochemical yields (decay-corrected) were 11±2 % (n =12) for [18F]MFBG and 41±12 % (n =5) for [18F]PFBG, respectively. The specific uptakes of [18F]MFBG and [18F]PFBG were similar in C6-hNET cells, but 4-fold less than that of [123I]/[124I]MIBG. However, in vivo [18F]MFBG accumulation in C6-hNET tumors was 1.6-fold higher than that of [18F]PFBG at 1 h p.i., whereas their uptakes were similar at 4 h. Despite [18F]MFBG having a 2.8-fold lower affinity to hNET and approximately 4-fold lower cell uptake in vitro compared to [123I]/[124I]MIBG, PET imaging demonstrated that [18F]MFBG was able to visualize C6-hNET xenografts better than [124I]MIBG. Biodistribution studies showed [18F]MFBG and 123I-MIBG had a similar tumor accumulation, which was lower than that of no-carrier-added [124I]MIBG, but [18F]MFBG showed a significantly more rapid body clearance and lower uptake in most non-targeting organs. Conclusion: [18F]MFBG and [18F]PFBG were synthesized in reasonable radiochemical yields under milder conditions. [ 18F]MFBG is a better PET ligand to image hNET expression in vivo at 1-4 h p.i. than both [18F]PFBG and [123I]/[ 124I]MIBG.
KW - HNETreporter gene
KW - PET imaging
UR - http://www.scopus.com/inward/record.url?scp=84897096390&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897096390&partnerID=8YFLogxK
U2 - 10.1007/s00259-013-2558-9
DO - 10.1007/s00259-013-2558-9
M3 - Article
C2 - 24173571
AN - SCOPUS:84897096390
SN - 1619-7070
VL - 41
SP - 322
EP - 332
JO - European Journal of Nuclear Medicine and Molecular Imaging
JF - European Journal of Nuclear Medicine and Molecular Imaging
IS - 2
ER -