SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons

Gavin Rumbaugh, J. Paige Adams, Jee H. Kim, Richard L. Huganir

Research output: Contribution to journalArticlepeer-review

159 Scopus citations


Silent synapses, or excitatory synapses that lack functional α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), are thought to be critical for regulation of neuronal circuits and synaptic plasticity. Here, we report that SynGAP, an excitatory synapse-specific RasGAP, regulates AMPAR trafficking, silent synapse number, and excitatory synaptic transmission in hippocampal and cortical cultured neurons. Overexpression of SynGAP in neurons results in a remarkable depression of AMPAR-mediated miniature excitatory postsynaptic currents, a significant reduction in synaptic AMPAR surface expression, and a decrease in the insertion of AMPARs into the plasma membrane. This change is specific for AMPARs because no change is observed in synaptic NMDA receptor expression or total synapse density. In contrast to these results, synaptic transmission is increased in neurons from SynGAP knock-out mice as well as in neuronal cultures treated with SynGAP small interfering RNA. In addition, activation of the extracellular signal-regulated kinase, ERK, is significantly decreased in SynGAP-overexpressing neurons, whereas P38 mitogen-activated protein kinase (MAPK) signaling is potentiated. Furthermore, ERK activation is up-regulated in neurons from SynGAP knockout mice, whereas P38 MAPK function is depressed. Taken together, these data suggest that SynGAP plays a critical role in the regulation of neuronal MAPK signaling, AMPAR membrane trafficking, and excitatory synaptic transmission.

Original languageEnglish (US)
Pages (from-to)4344-4351
Number of pages8
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number12
StatePublished - Mar 21 2006


  • Glutamate
  • Plasticity
  • Ras
  • Receptor
  • Trafficking

ASJC Scopus subject areas

  • General


Dive into the research topics of 'SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons'. Together they form a unique fingerprint.

Cite this