Abstract
To evaluate the human T-lymphotropic virus type 1 (HTLV-1) proviral DNA load in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and asymptomatic HTLV-1 carriers, a SYBR Green-based real-time quantitative polymerase chain reaction (qPCR) assay was developed. HTLV-1 proviral DNA in peripheral blood mononuclear cells (PBMCs) was quantified using primers targeting the pX region and the HTLV-1 copy number normalized to the amount of ERV-3 (Endogenous Retrovirus 3) cellular DNA. Thirty-three asymptomatic HTLV-1 carriers (ACs) and 39 patients with HAM/TSP were enrolled. Some participants were relatives of HAM/TSP cases (16 ACs and 7 patients with HAM/TSP). On multiple linear regression analysis, the authors found a significant association between clinical status and HTLV-1 proviral load (P<.01), but only among women. ACs showed a median proviral load of 561 copies per 10 4 PBMCs (interquartile range: 251-1623). In HAM/TSP patients, the median proviral load was 1783 (1385-2914). ACs related to HAM/TSP patients presented a relatively high proviral load (median 1152); however, the association between relatedness to a HAM/TSP patient and proviral load was not significant (P = .1). In HAM/TSP patients, no association was found between proviral load and disease duration, progression or severity. The fact that the effect of HAM/TSP upon the HTLV-1 proviral load differed between sexes and the finding of a high proviral load among asymptomatic relatives of HAM/TSP patients suggest that not yet identified genetic or environmental factors influence the pathogenesis of HTLV-1 infection.
Original language | English (US) |
---|---|
Pages (from-to) | 456-465 |
Number of pages | 10 |
Journal | Journal of neurovirology |
Volume | 12 |
Issue number | 6 |
DOIs | |
State | Published - Dec 2006 |
Externally published | Yes |
Keywords
- Human T-lymphotropic virus 1
- Paraparesis, PBMC
- Peru
- Proviral load
- Tropical spastic
ASJC Scopus subject areas
- Neurology
- Clinical Neurology
- Cellular and Molecular Neuroscience
- Virology