TY - JOUR
T1 - Sugar epitopes as potential universal disease transmission blocking targets
AU - Dinglasan, Rhoel R.
AU - Valenzuela, Jesús G.
AU - Azad, Abdu F.
N1 - Funding Information:
This study was supported by grants from the NIAID/NIH.
PY - 2005/1
Y1 - 2005/1
N2 - One promising method to prevent vector-borne diseases is through the use of transmission blocking vaccines (TBVs). However, developing several anti-pathogen TBVs may be impractical. In this study, we have identified a conserved candidate carbohydrate target in the midguts of several Arthropod vectors. A screen of the novel GlycoChip ® glycan array found that the anti-carbohydrate malaria transmission blocking monoclonal antibody (MG96) preferentially recognized d-mannose (α) and the type II lactosamine disaccharide. The specificity for d-mannose was confirmed by competition ELISA using α-methyl mannoside as inhibitor. Con A, which identifies terminal mannose residues, did not inhibit MG96 reactivity with mosquito midgut lysates, suggesting that Con A has differential recognition of this monosaccharide. However, the jack bean lectin, Jacalin, which recognizes d-mannose (α), d-galactose (α/β) and the T antigen, not only displays a similar banding profile to that recognized by MG96 on immunoblot but was also shown to effectively inhibit MG96. Wheat-germ agglutinin, which recognizes N-acetyllactosamine units, only partially inhibited MG96 reactivity. This highlights the contribution of both glycan moieties to the MG96 epitope or glycotope. Enzyme deglycosylation results suggest that MG96 recognizes a mannose α1-6 substitution on an O-linked oligosaccharide. Taken together, the data suggest that MG96 recognizes a discontinuous glycotope composed of Manα1-6 proximal to Galβ1-4GlcNAc-α-O-R glycans on arthropod vector midguts. As such, these glycotopes may represent potential transmission blocking vaccine targets for a wide range of vector-borne pathogens.
AB - One promising method to prevent vector-borne diseases is through the use of transmission blocking vaccines (TBVs). However, developing several anti-pathogen TBVs may be impractical. In this study, we have identified a conserved candidate carbohydrate target in the midguts of several Arthropod vectors. A screen of the novel GlycoChip ® glycan array found that the anti-carbohydrate malaria transmission blocking monoclonal antibody (MG96) preferentially recognized d-mannose (α) and the type II lactosamine disaccharide. The specificity for d-mannose was confirmed by competition ELISA using α-methyl mannoside as inhibitor. Con A, which identifies terminal mannose residues, did not inhibit MG96 reactivity with mosquito midgut lysates, suggesting that Con A has differential recognition of this monosaccharide. However, the jack bean lectin, Jacalin, which recognizes d-mannose (α), d-galactose (α/β) and the T antigen, not only displays a similar banding profile to that recognized by MG96 on immunoblot but was also shown to effectively inhibit MG96. Wheat-germ agglutinin, which recognizes N-acetyllactosamine units, only partially inhibited MG96 reactivity. This highlights the contribution of both glycan moieties to the MG96 epitope or glycotope. Enzyme deglycosylation results suggest that MG96 recognizes a mannose α1-6 substitution on an O-linked oligosaccharide. Taken together, the data suggest that MG96 recognizes a discontinuous glycotope composed of Manα1-6 proximal to Galβ1-4GlcNAc-α-O-R glycans on arthropod vector midguts. As such, these glycotopes may represent potential transmission blocking vaccine targets for a wide range of vector-borne pathogens.
KW - Carbohydrate
KW - Midgut
KW - Mosquito
KW - Transmission blocking vaccine
KW - Vector-borne disease
UR - http://www.scopus.com/inward/record.url?scp=10944268260&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=10944268260&partnerID=8YFLogxK
U2 - 10.1016/j.ibmb.2004.09.005
DO - 10.1016/j.ibmb.2004.09.005
M3 - Article
C2 - 15607650
AN - SCOPUS:10944268260
SN - 0965-1748
VL - 35
SP - 1
EP - 10
JO - Insect Biochemistry and Molecular Biology
JF - Insect Biochemistry and Molecular Biology
IS - 1
ER -