Substrate-mediated electron transfer in peptidylglycine α-hydroxylating monooxygenase

Sean T. Prigge, Aparna S. Kolhekar, Betty A. Eipper, Richard E. Mains, L. Mario Amzel

Research output: Contribution to journalArticlepeer-review

148 Scopus citations


Peptide amidation is a ubiquitous posttranslational modification of bioactive peptides. Peptidylglycine α-hydroxylating monooxygenase (PHM; EC, the enzymne that catalyzes the first step of this reaction, is composed of two domains, each of which binds one copper atom. The coppers are held 11 Å apart on either side of a solvent-filled interdomain cleft, and the PHM reaction requires electron transfer between these sites. A plausible mechanism for electron transfer might involve interdomain motion to decrease the distance between the copper atoms. Our experiments show that PHM catalytic core (PHMcc) is enzymatically active in the crystal phase, where interdomain motion is not possible. Instead, structures of two states relevant to catalysis indicate that water, substrate and active site residues may provide an electron transfer pathway that exists only during the PHM catalytic cycle.

Original languageEnglish (US)
Pages (from-to)976-983
Number of pages8
JournalNature Structural Biology
Issue number10
StatePublished - 1999

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Genetics


Dive into the research topics of 'Substrate-mediated electron transfer in peptidylglycine α-hydroxylating monooxygenase'. Together they form a unique fingerprint.

Cite this