TY - JOUR
T1 - Structures and pH-sensing mechanism of the proton-activated chloride channel
AU - Ruan, Zheng
AU - Osei-Owusu, James
AU - Du, Juan
AU - Qiu, Zhaozhu
AU - Lü, Wei
N1 - Funding Information:
Acknowledgements We thank G. Zhao and X. Meng for support with data collection at the David Van Andel Advanced Cryo-Electron Microscopy Suite; the HPC team of VARI for computational support; and D. Nadziejka for technical editing. W.L. is supported by National Institutes of Health (NIH) grants R56HL144929 and R01NS112363; Z.Q. is supported by a McKnight Scholar Award, a Klingenstein-Simon Scholar Award, a Sloan Research Fellowship in Neuroscience and NIH grants R35GM124824 and R01NS118014; Z.R. is supported by an American Heart Association (AHA) postdoctoral fellowship (grant 20POST35120556); J.O.-O. is supported by an AHA predoctoral fellowship (grant 18PRE34060025); and J.D. is supported by a McKnight Scholar Award, a Klingenstein-Simon Scholar Award, a Sloan Research Fellowship in Neuroscience, a Pew Scholar in the Biomedical Sciences and NIH grant R01NS111031.
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2020/12/10
Y1 - 2020/12/10
N2 - The proton-activated chloride channel (PAC) is active across a wide range of mammalian cells and is involved in acid-induced cell death and tissue injury1–3. PAC has recently been shown to represent a novel and evolutionarily conserved protein family4,5. Here we present two cryo-electron microscopy structures of human PAC in a high-pH resting closed state and a low-pH proton-bound non-conducting state. PAC is a trimer in which each subunit consists of a transmembrane domain (TMD), which is formed of two helices (TM1 and TM2), and an extracellular domain (ECD). Upon a decrease of pH from 8 to 4, we observed marked conformational changes in the ECD–TMD interface and the TMD. The rearrangement of the ECD–TMD interface is characterized by the movement of the histidine 98 residue, which is, after acidification, decoupled from the resting position and inserted into an acidic pocket that is about 5 Å away. Within the TMD, TM1 undergoes a rotational movement, switching its interaction partner from its cognate TM2 to the adjacent TM2. The anion selectivity of PAC is determined by the positively charged lysine 319 residue on TM2, and replacing lysine 319 with a glutamate residue converts PAC to a cation-selective channel. Our data provide a glimpse of the molecular assembly of PAC, and a basis for understanding the mechanism of proton-dependent activation.
AB - The proton-activated chloride channel (PAC) is active across a wide range of mammalian cells and is involved in acid-induced cell death and tissue injury1–3. PAC has recently been shown to represent a novel and evolutionarily conserved protein family4,5. Here we present two cryo-electron microscopy structures of human PAC in a high-pH resting closed state and a low-pH proton-bound non-conducting state. PAC is a trimer in which each subunit consists of a transmembrane domain (TMD), which is formed of two helices (TM1 and TM2), and an extracellular domain (ECD). Upon a decrease of pH from 8 to 4, we observed marked conformational changes in the ECD–TMD interface and the TMD. The rearrangement of the ECD–TMD interface is characterized by the movement of the histidine 98 residue, which is, after acidification, decoupled from the resting position and inserted into an acidic pocket that is about 5 Å away. Within the TMD, TM1 undergoes a rotational movement, switching its interaction partner from its cognate TM2 to the adjacent TM2. The anion selectivity of PAC is determined by the positively charged lysine 319 residue on TM2, and replacing lysine 319 with a glutamate residue converts PAC to a cation-selective channel. Our data provide a glimpse of the molecular assembly of PAC, and a basis for understanding the mechanism of proton-dependent activation.
UR - http://www.scopus.com/inward/record.url?scp=85094972388&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094972388&partnerID=8YFLogxK
U2 - 10.1038/s41586-020-2875-7
DO - 10.1038/s41586-020-2875-7
M3 - Article
C2 - 33149300
AN - SCOPUS:85094972388
SN - 0028-0836
VL - 588
SP - 350
EP - 354
JO - Nature
JF - Nature
IS - 7837
ER -