TY - GEN
T1 - Structural connectivity analysis reveals topological aberrations in patients with schizophrenia
AU - Sun, Yu
AU - Lee, Renick
AU - Shen, Kaiquan
AU - Bezerianos, Anastasios
AU - Thakor, Nitish
AU - Sim, Kang
PY - 2013/10/31
Y1 - 2013/10/31
N2 - Topological analysis and the associated parameters allow elucidation of brain networks in health and illness. Evidently useful measures for defining network competency such as small-worldness can potentially improve understanding of brain connectivity and their disruptions underlying neuropsychiatric conditions such as schizophrenia. In the current study, we assessed the structural differences of brain networks in schizophrenia patients as compared with healthy controls. As proof of concept investigation, diffusion tensor imaging recordings from 2 schizophrenia patients and 2, gender and age matched, control subjects were subjected to analysis using several graph network distance metrics. Among them, those that appeared to have the ability to encode and highest sensitivity in shedding light about anatomical changes in neuron deficiency were the shortest path length and clustering coefficient parameters. Schizophrenia patients displayed comparatively lower clustering coefficient, longer path lengths and hence reduced small-worldness. These results suggest aberrant topological architecture in the structural brain networks of patients with schizophrenia, which may impact the psychopathological and cognitive manifestations of this potentially crippling illness.
AB - Topological analysis and the associated parameters allow elucidation of brain networks in health and illness. Evidently useful measures for defining network competency such as small-worldness can potentially improve understanding of brain connectivity and their disruptions underlying neuropsychiatric conditions such as schizophrenia. In the current study, we assessed the structural differences of brain networks in schizophrenia patients as compared with healthy controls. As proof of concept investigation, diffusion tensor imaging recordings from 2 schizophrenia patients and 2, gender and age matched, control subjects were subjected to analysis using several graph network distance metrics. Among them, those that appeared to have the ability to encode and highest sensitivity in shedding light about anatomical changes in neuron deficiency were the shortest path length and clustering coefficient parameters. Schizophrenia patients displayed comparatively lower clustering coefficient, longer path lengths and hence reduced small-worldness. These results suggest aberrant topological architecture in the structural brain networks of patients with schizophrenia, which may impact the psychopathological and cognitive manifestations of this potentially crippling illness.
UR - http://www.scopus.com/inward/record.url?scp=84886581329&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886581329&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2013.6609768
DO - 10.1109/EMBC.2013.6609768
M3 - Conference contribution
C2 - 24109955
AN - SCOPUS:84886581329
SN - 9781457702167
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 1386
EP - 1389
BT - 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
T2 - 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Y2 - 3 July 2013 through 7 July 2013
ER -