Stimulus intensity-dependent recruitment of NaV1 subunits in action potential initiation in nerve terminals of vagal C-fibers innervating the esophagus

Fei Ru, Nikoleta Pavelkova, Jeffrey L. Krajewski, Jeff S. McDermott, Bradley J. Undem, Marian Kollarik

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We investigated voltage-gated sodium channel (NaV1) subunits that regulate action potential initiation in the nerve terminals of vagal nodose C-fibers innervating the esophagus. Extracellular single fiber recordings were made from the nodose C-fibers, with mechanically sensitive nerve terminals in the isolated innervated Guinea pig esophagus. NaV1 inhibitors were selectively delivered to the tissue-containing nerve terminals. Graded esophageal distention was used for mechanical stimulation. The NaV1.7 inhibitor PF-05089771 nearly abolished action potential initiation in response to low levels of esophageal distention but only partially inhibited the response to higher levels of esophageal distention. The PF-05089771insensitive component of the response progressively increased (up to ≈50%) with increasing esophageal distention and was abolished by tetrodotoxin (TTX). In addition to NaV1.7, nodose C-fiber [transient receptor potential channel-vanilloid subfamily member 1 (TRPV1)positive] neurons retrogradely labeled from the esophagus expressed mRNA for multiple TTX-sensitive NaV1s. The group NaV1.1, NaV1.2, and NaV1.3 inhibitor ICA-121431 inhibited but did not abolish the PF-05089771-insensitive component of the response to high level of esophageal distention. However, combination of ICA-121431 with compound 801, which also inhibits NaV1.7 and NaV1.6, nearly abolished the response to the high level of esophageal distention. Our data indicate that the action potential initiation in esophageal nodose C-fibers evoked by low (innocuous) levels of esophageal distention is mediated by NaV1.7. However, the response evoked by higher (noxious) levels of esophageal distention has a progressively increasing NaV1.7-independent component that involves multiple TTX-sensitive NaV1s. The stimulus intensity-dependent recruitment of NaV1s may offer novel opportunities for strategic targeting of NaV1 subunits for inhibition of nociceptive signaling in visceral C-fibers. NEW & NOTEWORTHY We report that pharmacologically distinguishable voltage-gated sodium channels (NaV1) mediate action potential initiation at low (innocuous) versus high (noxious) intensity of esophageal distention in nerve terminals of vagal nodose C-fibers. Action potential initiation at low intensity is entirely dependent on NaV1.7; however, additional tetrodotoxin (TTX)-sensitive NaV1s are recruited at higher intensity of distention. This is the first demonstration that NaV1s underlying action potential initiation in visceral C-fibers depend on the intensity of the stimulus.

Original languageEnglish (US)
Pages (from-to)G443-G453
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume319
Issue number4
DOIs
StatePublished - 2020

Keywords

  • C-fibers
  • Esophagus
  • Nerve terminal
  • Vagus nerve
  • Voltage-gated sodium channels

ASJC Scopus subject areas

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Stimulus intensity-dependent recruitment of NaV1 subunits in action potential initiation in nerve terminals of vagal C-fibers innervating the esophagus'. Together they form a unique fingerprint.

Cite this