Statistical modeling of acute and chronic pain patient-reported outcomes obtained from ecological momentary assessment

Andrew Leroux, Ciprian Crainiceanu, Scott Zeger, Margaret Taub, Briha Ansari, Tor D. Wager, Emine Bayman, Christopher Coffey, Carl Langefeld, Robert McCarthy, Alex Tsodikov, Chad Brummet, Daniel J. Clauw, Robert R. Edwards, Martin A. Lindquist, Angela Ambrosi, Sara Amolegbe, Inna Belfer, Melissa Ghim, Nic JohnstonPatricia Labosky, Aron Marquitz, Devon Oskvig, Leah Pogorzala, Linda Porter, John Satterlee, Laura Wandner, Susan Wright, Kortney Barrett, Emine Bayman, Christopher Coffey, Michele Costigan, Dana Dailey, Dixie Ecklund, Laura Frey Law, Giovanni Berardi, Greg Bernhard, Trevis Huff, Zackary Lemka, Vincent Magnotta, Leigh Nadel, Tina Neill-Hudson, Lynn Rasmussen, Kathleen Sluka, Carol Vance, Candy Hodges, Brian Caffo, Vince Calhoun, Ciprian Crainiceanu, Luda Diatchenko, Adrian Gherman, Andre Hackman, Kasper Hansen, Hongkai Ji, Ari Kahn, Martin Lindquist, Vitaly Napadow, Marc Parisien, Ingo Ruczinski, Kara Friedman, Margaret Taub, Tor Wager, Scott Zeger, James Carson, Karla Gendler, Matthew Vaughn, Pat Scherer, Lissa Pearson, Hedda Prochaska, Joshua Urrutia, Shweta Gopaulakrishnan, Joe Stubbs, Christian Garcia, Alexander Fields, Tracy Brown, Vera Belcher, John Gentle, Joon Yee Chuah, Sal Tijerina, Frank Netscher, Keith Strmiska, Nathaniel Mendoza, Andrew Hardy, Chris Jordan, Dan Stanzione, Donald Koehler, James Ford, Hee Jung Jung, Bethany Hunt, Stephani Sutherland, Patrick Sadil, Briha Ansari, Khaled Hasan, Micah Johnson, Farzad Farahani, Vennela Gajjala, Erik Westlund, Hristo Piponov, Pottumarthi Prasad, Vivien Wang, Maryann Regner, Nondas Leloudas, Samantha Lariosa, Pablo Vicente, Emma Griebenow, John Burns, Asokumar Buvanendran, Joshua Jacobs, Robert McCarthy, Laura Quigley, Silvia Marroquin, Abigail Goerge, Michael Liptay, Anne Kelly, Christopher Sica, Isabella Milejczyk, Zaki Mehkri, Joe X. Zhou, Michael Flannery, Qingfei Luo, Muge Karaman, Hagai Ganin, Enamul Bhuiyan, Ping Shou Zhong, Tessa Balach, Maria Lucia Madariaga, Olivia Keaveny, Justin Bell, Michael Koch, Sara Wallace, Aravind Athiviraham, Xiaodong Guo, Hue Luu, Derrick Brown, Meghan Day, Darren Bryan, Amy Durkin, Laura Cin, Stephanie Pellegrino, Zainab Yussuf, Chad Brummett, Kendall Dubois, Jennifer Waljee, Daniel Clauw, Douglas Colquhoun, Sachin Kheterpal, Andrew Chang, Steven Harte, David Williams, De Ming (Joe) Chue, Samantha Pianga (law), Mary Donahue, Kathy Scott, Courtney Cole, De Anna Hanewald, Michael (Justin) Sipe, Alicia Suydam, Scott Peltier, Eric Ichesco, Remy Lobo, Alanna Harris, Chelsea Merillat, Madhumitha Balaji, Anik Sinha, Andrew Urquhart, Elizabeth Dailey, Jaye Minghine, Chelsea Kaplan, Melanie Wong, Rachel Bergmans, Tony Larkin, Noah Waller, Esmeralda Hidalgo-Lopez, Jimmy Jagan, Emre Berk Hayir, Maggie Makar, Sydney Whack, Maximillian Egan, Stephan Frangakis, Courtni Minghine, Sophie Mehta, Ambar Akhlas, Tanja Jovanovic, Sterling Winters, Xuan Yang, Sophie George, Shaurel Valbrun, Mubeena Hanif, Walker Barnes, Ramtilak Gattu, Todd Mulderink, Mark Delano, Geoffrey Lam, Yong Zhou, Dave Chesla, John Mahajan, Danneka Cooper, Denise Wittenbach, Brian Winner, Crystal Coulter-Robinson, Bronson Foote, Nina Duong, Kumari Adams, Darlene Wahlberg, Nivya Kolli, Kara Sawaya, Andrew Popoff, Rebecca Sandborg, Raed Alnajjar, Mohan Kulkarni, Ikenna Okereke, Michael Charters, Miguel Alvelo-Rivera, Lara Zador, Kasia (Katherine) Nowak, Allison Pekar, Olivia Dionisio, Angela Polanco, Audrey Tacderas, Niloofar Afari, Kathleen Marie Fisch, Kristen Lynn Jepsen, Louise Laurent, Mark Wallace, Jon Jacobs, Anna Lokshin, Wei Jun Qian, Adam Swensen, Panshak Dakup, Oliver Fiehn, Timothy Howard, Tobias Kind, Carl Duane Langefeld, Michael Olivier, Ellen Quillen, Kip Zimmerman, Benlian Wang, Laura Cox, Sobha Puppala, Arisbeth Reyes

Research output: Contribution to journalArticlepeer-review

Abstract

Ecological momentary assessment (EMA) allows for the collection of participant-reported outcomes (PROs), including pain, in the normal environment at high resolution and with reduced recall bias. Ecological momentary assessment is an important component in studies of pain, providing detailed information about the frequency, intensity, and degree of interference of individuals' pain. However, there is no universally agreed on standard for summarizing pain measures from repeated PRO assessment using EMA into a single, clinically meaningful measure of pain. Here, we quantify the accuracy of summaries (eg, mean and median) of pain outcomes obtained from EMA and the effect of thresholding these summaries to obtain binary clinical end points of chronic pain status (yes/no). Data applications and simulations indicate that binarizing empirical estimators (eg, sample mean, random intercept linear mixed model) can perform well. However, linear mixed-effect modeling estimators that account for the nonlinear relationship between average and variability of pain scores perform better for quantifying the true average pain and reduce estimation error by up to 50%, with larger improvements for individuals with more variable pain scores. We also show that binarizing pain scores (eg, <3 and ≥3) can lead to a substantial loss of statistical power (40%-50%). Thus, when examining pain outcomes using EMA, the use of linear mixed models using the entire scale (0-10) is superior to splitting the outcomes into 2 groups (<3 and ≥3) providing greater statistical power and sensitivity.

Original languageEnglish (US)
Pages (from-to)1955-1965
Number of pages11
JournalPain
Volume165
Issue number9
DOIs
StatePublished - Sep 1 2024

Keywords

  • Chronic pain
  • Continuous outcomes
  • Ecological momentary assessment
  • Patient reported outcomes
  • Statistical modeling, Missing data

ASJC Scopus subject areas

  • Neurology
  • Clinical Neurology
  • Anesthesiology and Pain Medicine

Fingerprint

Dive into the research topics of 'Statistical modeling of acute and chronic pain patient-reported outcomes obtained from ecological momentary assessment'. Together they form a unique fingerprint.

Cite this