Statistical inference for multi-pathogen systems

Sourya Shrestha, Aaron A. King, Pejman Rohani

Research output: Contribution to journalArticlepeer-review

40 Scopus citations


There is growing interest in understanding the nature and consequences of interactions among infectious agents. Pathogen interactions can be operational at different scales, either within a co-infected host or in host populations where they co-circulate, and can be either cooperative or competitive. The detection of interactions among pathogens has typically involved the study of synchrony in the oscillations of the protagonists, but as we show here, phase association provides an unreliable dynamical fingerprint for this task. We assess the capacity of a likelihood-based inference framework to accurately detect and quantify the presence and nature of pathogen interactions on the basis of realistic amounts and kinds of simulated data. We show that when epidemiological and demographic processes are well understood, noisy time series data can contain sufficient information to allow correct inference of interactions in multi-pathogen systems. The inference power is dependent on the strength and time-course of the underlying mechanism: stronger and longer-lasting interactions are more easily and more precisely quantified. We examine the limitations of our approach to stochastic temporal variation, under-reporting, and over-aggregation of data. We propose that likelihood shows promise as a basis for detection and quantification of the effects of pathogen interactions and the determination of their (competitive or cooperative) nature on the basis of population-level time-series data.

Original languageEnglish (US)
Article numbere1002135
JournalPLoS computational biology
Issue number8
StatePublished - Aug 2011
Externally publishedYes

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics


Dive into the research topics of 'Statistical inference for multi-pathogen systems'. Together they form a unique fingerprint.

Cite this