TY - JOUR
T1 - Stability, deformity, and fixation of the floating shoulder
T2 - a cadaveric biomechanical study
AU - Reynolds, Alan W.
AU - Schimoler, Patrick J.
AU - Miller, Mark C.
AU - Kharlamov, Alexander
AU - Hughes, Alice J.
AU - Altman, Gregory T.
N1 - Funding Information:
Funding: This investigation was aided by a grant from Acumed LLC. Grant funds were used for purchase of specimens and lab supplies. No funding nor personnel from Acumed LLC were involved in data collection, data analysis or preparation of the manuscript.
Publisher Copyright:
© 2022 Journal of Shoulder and Elbow Surgery Board of Trustees
PY - 2023/3
Y1 - 2023/3
N2 - Background: Floating shoulder injuries cause instability and deformity due to disruptions of the scapula, clavicle, and superior shoulder suspensory complex ligaments (SSSC). Resulting deformity of the glenopolar angle (GPA) has not previously been established, nor has the impact on stability and deformity when surgical fixation is performed. This study sought to quantify stability and deformity for multiple injury patterns and the improvement to these parameters provided by clavicle and coracoclavicular (CC) ligament fixation. Methods: Fourteen cadaveric specimen upper extremities were used, which included the entire upper extremity, scapula, clavicle, and cranial-most ribs. After being mounted upright, a scapular neck fracture was created, followed by either a midshaft clavicle fracture or sectioning of the acromioclavicular and coracoacromial ligaments. Subsequent sectioning of the other structure(s) followed by the CC ligaments was then performed. In all specimens, the clavicle was then plated, followed by a CC ligament repair. At each step, a radiograph in the AP plane of the scapula was taken to measure GPA and displacement of the glenoid fragment using radiopaque markers placed in the scapula. These radiographs were taken both unloaded and with a 100-N applied medializing force. Results: When evaluating deformity related to sectioning, the GPA was reduced when the CC ligaments were sectioned compared to an isolated scapula fracture (P = .022) and compared to a combined scapula and clavicle fracture (P = .037). For stability, displacement with a 100-N force was significantly increased when the CC ligaments were sectioned compared to an isolated scapula fracture (P = .027). In cases of an ipsilateral scapula neck and clavicle fracture with intact ligaments, fixation of the clavicle alone provided a statistically significant improvement in the GPA (P = .002); but not in reduction of displacement (P = .061). In cases of an ipsilateral scapula neck and clavicle fracture with concomitant disruption of the coracoacromial, acromioclavicular, and CC ligaments, the GPA was improved by clavicle fixation (P < .001) and increasingly so by subsequent CC ligament repair (P < .001). Displacement was also improved in these 2 states (P < .001, P = .008, respectively). Discussion: This biomechanical study confirmed the importance of the acromioclavicular, coracoacromial, and CC ligaments in conferring stability in SSSC injuries. Disruption of the CC ligaments created significant deformity of the GPA and instability with a medializing force. Clinical treatment should consider the integrity of these ligaments and their repair in conjunction with clavicle fixation, knowing that this combination should restore a biomechanical state equivalent to an isolated scapula fracture.
AB - Background: Floating shoulder injuries cause instability and deformity due to disruptions of the scapula, clavicle, and superior shoulder suspensory complex ligaments (SSSC). Resulting deformity of the glenopolar angle (GPA) has not previously been established, nor has the impact on stability and deformity when surgical fixation is performed. This study sought to quantify stability and deformity for multiple injury patterns and the improvement to these parameters provided by clavicle and coracoclavicular (CC) ligament fixation. Methods: Fourteen cadaveric specimen upper extremities were used, which included the entire upper extremity, scapula, clavicle, and cranial-most ribs. After being mounted upright, a scapular neck fracture was created, followed by either a midshaft clavicle fracture or sectioning of the acromioclavicular and coracoacromial ligaments. Subsequent sectioning of the other structure(s) followed by the CC ligaments was then performed. In all specimens, the clavicle was then plated, followed by a CC ligament repair. At each step, a radiograph in the AP plane of the scapula was taken to measure GPA and displacement of the glenoid fragment using radiopaque markers placed in the scapula. These radiographs were taken both unloaded and with a 100-N applied medializing force. Results: When evaluating deformity related to sectioning, the GPA was reduced when the CC ligaments were sectioned compared to an isolated scapula fracture (P = .022) and compared to a combined scapula and clavicle fracture (P = .037). For stability, displacement with a 100-N force was significantly increased when the CC ligaments were sectioned compared to an isolated scapula fracture (P = .027). In cases of an ipsilateral scapula neck and clavicle fracture with intact ligaments, fixation of the clavicle alone provided a statistically significant improvement in the GPA (P = .002); but not in reduction of displacement (P = .061). In cases of an ipsilateral scapula neck and clavicle fracture with concomitant disruption of the coracoacromial, acromioclavicular, and CC ligaments, the GPA was improved by clavicle fixation (P < .001) and increasingly so by subsequent CC ligament repair (P < .001). Displacement was also improved in these 2 states (P < .001, P = .008, respectively). Discussion: This biomechanical study confirmed the importance of the acromioclavicular, coracoacromial, and CC ligaments in conferring stability in SSSC injuries. Disruption of the CC ligaments created significant deformity of the GPA and instability with a medializing force. Clinical treatment should consider the integrity of these ligaments and their repair in conjunction with clavicle fixation, knowing that this combination should restore a biomechanical state equivalent to an isolated scapula fracture.
KW - Basic Science Study
KW - Biomechanics
KW - Floating shoulder
KW - biomechanics
KW - clavicle
KW - coracoclavicular ligaments
KW - fracture
KW - scapula
UR - http://www.scopus.com/inward/record.url?scp=85147349817&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147349817&partnerID=8YFLogxK
U2 - 10.1016/j.jse.2022.09.021
DO - 10.1016/j.jse.2022.09.021
M3 - Article
C2 - 36283563
AN - SCOPUS:85147349817
SN - 1058-2746
VL - 32
SP - 519
EP - 525
JO - Journal of Shoulder and Elbow Surgery
JF - Journal of Shoulder and Elbow Surgery
IS - 3
ER -