Space Flight Enhances Stress Pathways in Human Neural Stem Cells

Nicholas Carpo, Victoria Tran, Juan Carlos Biancotti, Carlos Cepeda, Araceli Espinosa-Jeffrey

Research output: Contribution to journalArticlepeer-review

Abstract

Mammalian cells have evolved to function under Earth’s gravity, but how they respond to microgravity remains largely unknown. Neural stem cells (NSCs) are essential for the maintenance of central nervous system (CNS) functions during development and the regeneration of all CNS cell populations. Here, we examined the behavior of space (SPC)-flown NSCs as they readapted to Earth’s gravity. We found that most of these cells survived the space flight and self-renewed. Yet, some showed enhanced stress responses as well as autophagy-like behavior. To ascertain if the secretome from SPC-flown NSCs contained molecules inducing these responses, we incubated naïve, non-starved NSCs in a medium containing SPC-NSC secretome. We found a four-fold increase in stress responses. Proteomic analysis of the secretome revealed that the protein of the highest content produced by SPC-NSCs was secreted protein acidic and rich in cysteine (SPARC), which induces endoplasmic reticulum (ER) stress, resulting in the cell’s demise. These results offer novel knowledge on the response of neural cells, particularly NSCs, subjected to space microgravity. Moreover, some secreted proteins have been identified as microgravity sensing, paving a new venue for future research aiming at targeting the SPARC metabolism. Although we did not establish a direct relationship between microgravity-induced stress and SPARC as a potential marker, these results represent the first step in the identification of gravity sensing molecules as targets to be modulated and to design effective countermeasures to mitigate intracranial hypertension in astronauts using structure-based protein design.

Original languageEnglish (US)
Article number65
JournalBiomolecules
Volume14
Issue number1
DOIs
StatePublished - Jan 2024

Keywords

  • cell stress
  • human neural stem cells
  • intracranial hypertension
  • microgravity
  • space flight

ASJC Scopus subject areas

  • Molecular Biology
  • Biochemistry

Fingerprint

Dive into the research topics of 'Space Flight Enhances Stress Pathways in Human Neural Stem Cells'. Together they form a unique fingerprint.

Cite this