TY - JOUR
T1 - Sonodynamic Therapy for the Treatment of Glioblastoma Multiforme in a Mouse Model Using a Portable Benchtop Focused Ultrasound System
AU - Mess, Griffin
AU - Anderson, Taylor
AU - Kapoor, Shivani
AU - Thombre, Rasika
AU - Liang, Ruixing
AU - Derin, Emre
AU - Kempskileadingham, Kelley M.
AU - Yadav, Santosh K.
AU - Tyler, Betty
AU - Manbachi, Amir
N1 - Funding Information:
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Amir Manbachi teaches and consults for BK Medical (GE Healthcare), Neurosonics Medical, and is an inventor on a number of patent-pending FUS technologies. Betty Tyler has research funding from NIH and is a co-owner of Accelerating Combination Therapies*. Ashvattha Therapeutics Inc. has also licensed one of her patents, and she is a stockholder for Peabody Pharmaceuticals (*includes equity or options).
Funding Information:
The authors acknowledge funding support from the National Science Foundation (NSF) STTR Phase 1 Award (#: 1938939), by ASME Defense Advanced Research Projects Agency (DARPA) Award (#: N660012024075), and Johns Hopkins Institute for Clinical and Translational Research's (ICTR's) Clinical Research Scholars Program (KL2), administered by the National Institutes of Health (NIH) National Center for Advancing Translational Sciences (NCATS). The cells were purchased from and provided by the Mayo Foundation for Medical Education and Research.
Publisher Copyright:
© 2023 JoVE.
PY - 2023/2
Y1 - 2023/2
N2 - Sonodynamic therapy (SDT) is an application of focused ultrasound (FUS) that enables a sonosensitizing agent to prime tumors for increased sensitivity during sonication. Unfortunately, current clinical treatments for glioblastoma (GBM) are lacking, leading to low long-term survival rates among patients. SDT is a promising method for treating GBM in an effective, noninvasive, and tumor-specific manner. Sonosensitizers preferentially enter tumor cells compared to the surrounding brain parenchyma. The application of FUS in the presence of a sonosensitizing agent generates reactive oxidative species resulting in apoptosis. Although this therapy has been shown previously to be effective in preclinical studies, there is a lack of established standardized parameters. Standardized methods are necessary to optimize this therapeutic strategy for preclinical and clinical use. In this paper, we detail the protocol to perform SDT in a preclinical GBM rodent model using magnetic resonance-guided FUS (MRgFUS). MRgFUS is an important feature of this protocol, as it allows for specific targeting of a brain tumor without the need for invasive surgeries (e.g., craniotomy). The benchtop device used here can focus on a specific location in three dimensions by clicking on a target on an MRI image, making target selection a straightforward process. This protocol will provide researchers with a standardized preclinical method for MRgFUS SDT, with the added flexibility to change and optimize parameters for translational research.
AB - Sonodynamic therapy (SDT) is an application of focused ultrasound (FUS) that enables a sonosensitizing agent to prime tumors for increased sensitivity during sonication. Unfortunately, current clinical treatments for glioblastoma (GBM) are lacking, leading to low long-term survival rates among patients. SDT is a promising method for treating GBM in an effective, noninvasive, and tumor-specific manner. Sonosensitizers preferentially enter tumor cells compared to the surrounding brain parenchyma. The application of FUS in the presence of a sonosensitizing agent generates reactive oxidative species resulting in apoptosis. Although this therapy has been shown previously to be effective in preclinical studies, there is a lack of established standardized parameters. Standardized methods are necessary to optimize this therapeutic strategy for preclinical and clinical use. In this paper, we detail the protocol to perform SDT in a preclinical GBM rodent model using magnetic resonance-guided FUS (MRgFUS). MRgFUS is an important feature of this protocol, as it allows for specific targeting of a brain tumor without the need for invasive surgeries (e.g., craniotomy). The benchtop device used here can focus on a specific location in three dimensions by clicking on a target on an MRI image, making target selection a straightforward process. This protocol will provide researchers with a standardized preclinical method for MRgFUS SDT, with the added flexibility to change and optimize parameters for translational research.
UR - http://www.scopus.com/inward/record.url?scp=85149052997&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85149052997&partnerID=8YFLogxK
U2 - 10.3791/65114
DO - 10.3791/65114
M3 - Article
C2 - 36847383
AN - SCOPUS:85149052997
SN - 1940-087X
VL - 2023
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 192
M1 - e65114
ER -