TY - JOUR
T1 - Single cell ganglioside catabolism in primary cerebellar neurons and glia
AU - Essaka, David C.
AU - Prendergast, Jillian
AU - Keithley, Richard B.
AU - Hindsgaul, Ole
AU - Palcic, Monica M.
AU - Schnaar, Ronald L.
AU - Dovichi, Norman J.
N1 - Funding Information:
Acknowledgments We gratefully acknowledge funding from the National Institutes of Health (R01NS061767).
PY - 2012/6
Y1 - 2012/6
N2 - Cell-to-cell heterogeneity in ganglioside catabolism was determined by profiling fluorescent tetramethylrhodamine-labeled GM1 (TMR-GM1) breakdown in individual primary neurons and glia from the rat cerebellum. Cells isolated from 5 to 6 day old rat cerebella were cultured for 7 days, and then incubated for 14 h with TMR-GM1. Intact cells were recovered from cultures by mild proteolysis, paraformaldehyde fixed, and subjected to single cell analysis. Individual cells were captured in a capillary, lysed, and the released single-cell contents analyzed by capillary electrophoresis with quantitative laser-induced fluorescent detection of metabolites. Non-neuronal cells on average took up much more exogenous TMR-GM1 than neuronal cells, and catabolized it more extensively. After 14 h of incubation, non-neuronal cells retained only 14% of the TMR products as GM1 and GM2, compared to >50% for neurons. On average, non-neuronal cells contained 74% of TMR-labeled product as TMR-ceramide, compared to only 42% for neurons. Non-neuronal cells retained seven times as much TMRGM3 (7%) compared to neuronal cells (1%). To confirm the observed single cell metabolomics, we lysed and compared TMR-GM1 catabolic profiles from mixed neuron/glial cell cultures and from cultures depleted of non-neuronal cells by treatment with the antimitotic agent cytosine arabinoside. The lysed culture catabolic profiles were consistent with the average profiles of single neurons and glia. We conclude that the ultrasensitive analytic methods described accurately reflect single cell ganglioside catabolism in different cell populations from the brain.
AB - Cell-to-cell heterogeneity in ganglioside catabolism was determined by profiling fluorescent tetramethylrhodamine-labeled GM1 (TMR-GM1) breakdown in individual primary neurons and glia from the rat cerebellum. Cells isolated from 5 to 6 day old rat cerebella were cultured for 7 days, and then incubated for 14 h with TMR-GM1. Intact cells were recovered from cultures by mild proteolysis, paraformaldehyde fixed, and subjected to single cell analysis. Individual cells were captured in a capillary, lysed, and the released single-cell contents analyzed by capillary electrophoresis with quantitative laser-induced fluorescent detection of metabolites. Non-neuronal cells on average took up much more exogenous TMR-GM1 than neuronal cells, and catabolized it more extensively. After 14 h of incubation, non-neuronal cells retained only 14% of the TMR products as GM1 and GM2, compared to >50% for neurons. On average, non-neuronal cells contained 74% of TMR-labeled product as TMR-ceramide, compared to only 42% for neurons. Non-neuronal cells retained seven times as much TMRGM3 (7%) compared to neuronal cells (1%). To confirm the observed single cell metabolomics, we lysed and compared TMR-GM1 catabolic profiles from mixed neuron/glial cell cultures and from cultures depleted of non-neuronal cells by treatment with the antimitotic agent cytosine arabinoside. The lysed culture catabolic profiles were consistent with the average profiles of single neurons and glia. We conclude that the ultrasensitive analytic methods described accurately reflect single cell ganglioside catabolism in different cell populations from the brain.
KW - Capillary electrophoresis
KW - Ganglioside
KW - Glia
KW - Neuron
KW - Single cell analysis
UR - http://www.scopus.com/inward/record.url?scp=84862839446&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862839446&partnerID=8YFLogxK
U2 - 10.1007/s11064-012-0733-1
DO - 10.1007/s11064-012-0733-1
M3 - Article
C2 - 22407243
AN - SCOPUS:84862839446
SN - 0364-3190
VL - 37
SP - 1308
EP - 1314
JO - Neurochemical Research
JF - Neurochemical Research
IS - 6
ER -