Simulation of ultra low-dose scans in quantum counting clinical CT

Thomas Weidinger, Thorsten M. Buzug, Thomas Flohr, George S.K. Fung, Steffen Kappler, Karl Stierstorfer, Benjamin M.W. Tsui

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Contrary to conventional energy integrating detectors, electronics noise in quantum counting detectors (also frequently referred to as photon counting detectors) mainly affects the spectral resolution of the detector. There is almost no impact on the counting signal itself. This promises improved image quality due to image noise reduction in scans obtained from clinical computed tomography (CT) examinations with lowest X-ray tube currents or strongly attenuating obese patients. In most of these examinations, noise from the electronics dominates the image noise when using conventional detectors. Applying quantum counting detectors instead can improve image quality of ultra low-dose scans. This improvement may as well be used to reduce X-ray dose while maintaining image noise on the level of conventional detectors. To quantify these benefits, we have simulated sinograms of various slice scans of the human body, using the parametric 3D XCAT phantom (abdomen, shoulders) and a geometric DRASIM phantom (cranium). The simulation chain includes modeling the X-ray source, beam attenuation in the patient, and calculation of the detector response followed by data corrections and image reconstruction.We quantify the image noise in selected Region Of Interest (ROI) in the difference image of two scans that differ only in their image noise realization. Furthermore, we provide a direct comparison of image noise in energy integrating and quantum counting CT system concepts.

Original languageEnglish (US)
Title of host publication2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2011
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2495-2499
Number of pages5
ISBN (Print)9781467301183
DOIs
StatePublished - 2011
Externally publishedYes
Event2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2011 - Valencia, Spain
Duration: Oct 23 2011Oct 29 2011

Publication series

NameIEEE Nuclear Science Symposium Conference Record
ISSN (Print)1095-7863

Other

Other2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2011
Country/TerritorySpain
CityValencia
Period10/23/1110/29/11

ASJC Scopus subject areas

  • Radiation
  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Simulation of ultra low-dose scans in quantum counting clinical CT'. Together they form a unique fingerprint.

Cite this