Shuttle peptide delivers base editor RNPs to rhesus monkey airway epithelial cells in vivo

Katarina Kulhankova, Soumba Traore, Xue Cheng, Hadrien Benk-Fortin, Stéphanie Hallée, Mario Harvey, Joannie Roberge, Frédéric Couture, Sajeev Kohli, Thomas J. Gross, David K. Meyerholz, Garrett R. Rettig, Bernice Thommandru, Gavin Kurgan, Christine Wohlford-Lenane, Dennis J. Hartigan-O’Connor, Bradley P. Yates, Gregory A. Newby, David R. Liu, Alice F. TarantalDavid Guay, Paul B. McCray

Research output: Contribution to journalArticlepeer-review

Abstract

Gene editing strategies for cystic fibrosis are challenged by the complex barrier properties of airway epithelia. We previously reported that the amphiphilic S10 shuttle peptide non-covalently combined with CRISPR-associated (Cas) ribonucleoprotein (RNP) enabled editing of human and mouse airway epithelial cells. Here, we derive the S315 peptide as an improvement over S10 in delivering base editor RNP. Following intratracheal aerosol delivery of Cy5-labeled peptide in rhesus macaques, we confirm delivery throughout the respiratory tract. Subsequently, we target CCR5 with co-administration of ABE8e-Cas9 RNP and S315. We achieve editing efficiencies of up-to 5.3% in rhesus airway epithelia. Moreover, we document persistence of edited epithelia for up to 12 months in mice. Finally, delivery of ABE8e-Cas9 targeting the CFTR R553X mutation restores anion channel function in cultured human airway epithelia. These results demonstrate the therapeutic potential of base editor delivery with S315 to functionally correct the CFTR R553X mutation in respiratory epithelia.

Original languageEnglish (US)
Article number8051
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Shuttle peptide delivers base editor RNPs to rhesus monkey airway epithelial cells in vivo'. Together they form a unique fingerprint.

Cite this